

Journal of Modern Classical Physics & Quantum Neuroscience

ISSN: 3068-4196

DOI: doi.org/10.63721/25JPQN0129

"Matrix Coordinate Calendar" Enterprise Customization Solution

Zhou Zhongwang

School of Mathematics and Statistics, Weifang University, Weifang, Shandong, China

Citation: Zhou Zhongwang (2025) "Matrix Coordinate Calendar" enterprise customization solution.

J. of Mod Phy & Quant Neuroscience 1(3), 1-09. WMJ/JPQN-129

Abstract

This article presents a new calendar called "Matrix Coordinate Calendar", which is primarily determined by the week and is neater, simpler, and more aesthetically pleasing than traditional calendars.

*Corresponding author: Zhou Zhongwang, School of Mathematics and Statistics, Weifang University, Weifang, Shandong, China.

Submitted: 12.09.2025 **Accepted:** 15.09.2025 **Published:** 02.10.2025

Keywords: Calendar, Solar Calendar, Lunar Calendar, Matrix Coordinate Calendar

			Ja	nuary 202	26		
	4	5	6	7	1	2	3
1	01	02	03	04	05	06	07
2	08	09	10	11	12	13	14
3	15	16	17	18	19	20	21
4	22	23	24	25	26	27	28
5	29	30	31				

Table: 1

			F	ebruary	2026			
	7	1	2	3	4	5	6	
1	01	02	03	04	05	06	07	
2	08	09	10	11	12	13	14	
3	15	16	17	18	19	20	21	
4	22	23	24	25	26	27	28	

Table: 2

Tables 1 and 2 present the "Matrix Coordinate Calendar" for January and February 2026. The construction of the "Matrix Coordinate Calendar" for a given month in the Gregorian Calendar is as Follows:

- **Date Arrangement:** The dates start from the 1st of this month, with each row representing a period of 7 days, until the end of the month. The last row may contain fewer than 7 days, which is fine.
- Week Arrangement: The week starts from the day corresponding to the 1st of each month, incrementing by one day (modulo 7) until the seventh day. The week is arranged in the top row, and it is dynamically marked according to the starting day of each month to accommodate different months. The week and date are aligned vertically and horizontally.
- Month and Year Display: The month and year are clearly marked at the top.
- Example: Table 1 above displays the "matrix coordinate calendar" for January 2026 neat and orderly, with each row fixed at 7 days (except for the last row), and its week arrangement listed at the top row as 4567123. Since the 1st is Thursday, the week arrangement starts from 4, followed by 567123 (the 2nd is Friday, the 3rd is Saturday, and so on until the 7th is Wednesday). Table 2 is the "matrix coordinate calendar" for February 2026, with the 1st being Sunday, the 2nd being Monday, and so on until the 7th is Saturday, with the week arrangement starting from 7, followed by 123456. Its week arrangement, 7123456, is also listed at the top row. It is not difficult to derive the "matrix coordinate calendars" and their week arrangements for March, April, and any other month. Obviously, in the "matrix coordinate calendar" for January 2026, one can quickly find the 27th and immediately know that it falls on Tuesday. In contrast, finding the 27th and its day of the week in a traditional calendar is not as quick or straightforward. Furthermore, this date arrangement ("matrix coordinate calendar") is more organized, simpler, and neater than a traditional calendar. This is already a significant improvement, but it can be further optimized.

The date format in the Gregorian calendar is year-month-day, omitting the weekday. Using the "matrix coordinate calendar", the date can be represented as year-month-week-day, which actually supplements the weekday. For example, in the "matrix coordinate calendar" shown in Table 1 for January 2026, January 26th (indicated in bold in Table 1) appears in the fourth row and fifth natural column (Monday), so the position of 26th is represented as 4-1 (indicated in bold in Table 3), and 26th is called 4-1 day. Conversely, 2026-01-2-6 (pronounced as "January 2-6,2026") indicates the position of the third natural column (Saturday) in the second row of this "matrix coordinate calendar", where 2-6 is written (indicated in bold in Table 3), which corresponds to January 10th, 2026 in the Gregorian calendar. In this way, in the "matrix coordinate calendar", the Gregorian date and the date correspond one-to-one, for example, "26" corresponds to "4-1", "10" corresponds to "2-6", "1" corresponds to "1-4", and so on. Generally, the date is represented in the format of "week-day", and the "matrix coordinate calendar" for January 2026 is shown in Table 3

			•				
4	5	6	7	1	2	3	
1-4	1-5	1-6	1-7	1-1	1-2	1-3	
2-4	2-5	2-6	2-7	2-1	2-2	2-3	
3-4	3-5	3-6	3-7	3-1	3-2	3-3	
4-4	4-5	4-6	4-7	4-1	4-2	4-3	
5-4	5-5	5-6					
	1-4 2-4 3-4 4-4 5-4	4 5 1-4 1-5 2-4 2-5 3-4 3-5 4-4 4-5 5-4 5-5	4 5 6	4 5 6 7	January 2026 4 5 6 7 1 1-4 1-5 1-6 1-7 1-1 2-4 2-5 2-6 2-7 2-1 3-4 3-5 3-6 3-7 3-1 4-4 4-5 4-6 4-7 4-1 5-4 5-5 5-6	4 5 6 7 1 2	,

Table 3

In the week arrangement 4567123 at the top row of Table 3, the fourth day, Thursday, corresponds to the first natural column, and the sixth day, Saturday, corresponds to the third natural column. This is clear at a glance! The "6" in "2-6" has a dual meaning: it indicates that this day is the Saturday of the second week, and also indicates that this day is the sixth day of the second week (the third natural column), corresponding to the 7th + 3rd = 10th day of the Gregorian calendar!

From now on, whenever we mention the "matrix coordinate calendar" for a certain month in the Gregorian calendar, we are referring to the calendar like Table 3, which uses "x-y" dates! Thus, it is not difficult to obtain the "matrix coordinate calendar" for February 2026, as shown in Table 4.

				ruary 2				
	7	1	2	3	4	5	6	
1	1-7	1-1	1-2	1-3	1-4	1-5	1-6	_
2	2-7	2-1	2-2	2-3	2-4	2-5	2-6	
3	3-7	3-1	3-2	3-3	3-4	3-5	3-6	
4	4-7	4-1	4-2	4-3	4-4	1-5 2-5 3-5 4-5	4-6	

Table 4

Generally, there is such a "matrix coordinate calendar" for each month in the Gregorian calendar, and it can be easily constructed.

The date is expressed in the format of "year-month-week-day", where "day" represents both the calendar date and the day of the week, carrying a dual significance. It can also be said that the date and the day of the week coincide. Here is a detailed explanation of this new date representation method!

The calculation of weeks involves each month consisting of 4 to 5 weeks. For January 2026, the first seven days from the 1st to the 7th constitute the first week, which corresponds to the first row marked as "1" in Table 3: 1-4, 1-5, 1-6, 1-7, 1-1, 1-2, 1-3. The next seven days from the 8th to the 14th are the second week, represented by the second row marked as "2": 2-4, 2-5, 2-6, 2-7, 2-1, 2-2, 2-3. The days from the 15th to the 21st constitute the third week, as shown in the third row marked as "3": 3-4, 3-5, 3-6, 3-7, 3-1, 3-2, 3-3. The days from the 22nd to the 28th are the fourth week, listed in the fourth row marked as "4": 4-4, 4-5, 4-6, 4-7, 4-1, 4-2, 4-3.

Finally, the remaining days, from the 29th to the 31st, constitute the fifth week, as shown in the fifth row marked as "5": 5-4, 5-5, 5-6.

Obviously, there are 5 weeks in January 2026, while there are 4 weeks in February 2026.

It is worth noting that the week numbering here: Week 1, Week 2, Week 3, Week 4, Week 5, is slightly different from the traditional "calendar week" system.

In the weekly date format "Week-Day of the Week", the second number "day of the week" can also be referred to as date constitutes a cyclic arrangement of dates. For example, the second number of the dates in the first week of January 2026 - 1-4, 1-5, 1-6, 1-7, 1-1, 1-2, 1-3 - constitutes a cyclic arrangement of 4567123. This arrangement is called the date or week arrangement for that week, which is also the week arrangement for the month mentioned earlier. According to the previous explanation, the week and date coincide, so the week arrangement is also referred to as the date arrangement, and the date arrangement is also referred to as the week arrangement. Obviously, if the week arrangement for the first week of the month is 4567123, then the week arrangement for the second, third, and fourth weeks of the month will also be 4567123. If there is a fifth week, its dates will follow the previous small part of this arrangement (for example, the fifth week of January 2026 is 456). Clearly, the week (date) arrangement for January 2026 is 4567123, and the week (date) arrangement for February 2026 is 7123456. Generally, every month in the Gregorian calendar has a week (date) arrangement. Upon careful consideration of Tables 3 and 4, it is not difficult to see that the week or date arrangement of a month uniquely determines the "matrix coordinate calendar" for that month! The week of the first day of the month uniquely determines the week (date) arrangement for that month! Of course, the fifth week is an exception. That is to say, as long as the week of the first day is the same, their "matrix coordinate calendar" will be the same except for the fifth week, which may have slight differences in the last row! This shows the importance of the week of the first day of each month (this issue will be discussed later)! In summary, for any month in the Gregorian calendar, the second component arrangement of the dates in the first, second, third, and fourth weeks is a cyclic arrangement of 1234567, and it is exactly the same. If there is a fifth week, its arrangement is just the initial part of this cyclic arrangement. The second component of the weekly date increases by +1 (modulo 7), which is exactly the same as the week of the month! The first component of the weekly date is the week number of the week, which remains unchanged! It ensures absolute regularity, eliminates the common confusion in traditional calendar layouts, and can perfectly represent the dates of the week.

In the arrangement of dates and weeks within a month, unless separated by a 7, they are all arranged in ascending order. For example, in the arrangement of dates and weeks for January 2026, which is 4567123, all the dates and weeks before 7 are arranged in ascending order up to 7, and those after 7 are also arranged in ascending order, starting from 1. However, those separated by 7 are arranged with the larger ones coming before the smaller ones. Obviously, the arrangement of date or week for February 2026, which is 7123456, follows the same pattern!

Using the "matrix coordinate calendar" to represent dates, if the arrangement of dates (weeks) in a month is not 1234567, then it suffices to remember that 7 is followed by 1, and the rest of the parts are arranged in ascending order of 1, as described in the previous paragraph.

At first glance, this cyclic arrangement seems somewhat chaotic, for instance, 5 might be placed before 2. However, in this arrangement, there must be a segment of 56712, so 5 must indeed be placed before 2. Obviously, the left side of 7 is not chaotic, nor is the right side of 7. So, upon careful analysis, it is not chaotic at all! Instead, it is very regular and logical.

For example, the "matrix coordinate calendar" for January and February 2026 shown in Table 3 and Table 4 is

just like this! The top, bottom, left, and right are all very neat and beautiful. The first component (week number) of each column of dates increases by +1 from top to bottom, forming 1234 Or 12345, the second component (day of the week) remains unchanged; the first component (week number) of each row of dates remains unchanged, and the second component (day of the week) increments by +1 (modulo 7) from left to right to form the weekly date and day of the week arrangement for that week, which is also the week arrangement for that month. This construction is highly regular and logical! This speaks volumes!

Expressing dates in the format of year-month-week-day may seem more complicated on the surface due to the introduction of the "week" element, but in reality, it is simpler. This is because it can represent all dates using only the cyclic permutation of the first seven natural numbers 1234567, whereas the Gregorian calendar requires the first 31 natural numbers. Moreover, there is no need to separately track and record the week, and when broadcasting dates, radio and television stations do not have to announce the week, simply stating "February 3-5, 2026" is sufficient. This not only saves time but also eliminates the effort of verbalizing! Additionally, it makes some floating holidays more precise and memorable than traditional methods of expression. For example, Mother's Day will be " \mathcal{X} year-5-2-7", Father's Day will be " \mathcal{X} year-6-3-7", Thanksgiving will be " \mathcal{X} year-11-4-4", x-3 representing Wednesday, x-5 representing Friday, and so on. All of these demonstrate that using this method to express dates greatly reduces a lot of trouble!

The date x - y indicates holidays, and its discrepancy with the original holiday date is no more than 6 days. Therefore, they occur around the same time, without delaying anything! For example, International Women's Day can be represented as x year-3-2-1 day. If it is necessary to keep the original date, it is also very simple. Just change the "1" in the preceding date to the week of March 1st or March 8th!

The number of days from one date $x_1 - y_1$ to another date $x_2 - y_2$ in a month representing the distance between these two dates, is given by the following easily memorable formula:

$$d = 7(x_2 - x_1) + (y_2 - y_1)$$
(1)

The method for obtaining the value of y_1 , y_2 is as follows: in the arrangement of the week or date of the month, all numbers following 7 are increased by 7, while other numbers remain unchanged, including 7 itself. When d > 0, the date $x_1 - y_1$ was before the date $x_2 - y_2$, when d < 0, the date $x_1 - y_1$ was after the date $x_2 - y_2$, and when d = 0, the date $x_1 - y_1$ coincided with the date $x_2 - y_2$.

For example, if the week arrangement of a certain month is 4567123, then the distance from date 1-6 to date 2-1 is: (6 is before 7, so it remains unchanged, and 1 is after 7, so it is added by 7) = 7 + 2 = 9.

Using formula (1) to calculate the number of days between two dates only requires single-digit operations, whereas in the Gregorian calendar, calculating the number of days between two dates requires two-digit operations. Furthermore, the human brain is more adept at processing regular patterns of small numbers. Therefore, in comparison, formula (1) is preferable as long as the dates x - y are given.

Due to the dynamic representation of weeks, the x-y day in one month may not correspond to the same day with x-y day in another month relative to the starting day of each month (this does not occur in the Gregorian calendar). However, there is an interesting result: regardless of how the weeks are arranged, that is,

regardless of the month, the number of days between two fixed dates $x_1 - y_1$ $x_2 - y_2$ (both dates are fixed and in the same month, but the month changes), or the distance between these two dates, there may be two or

one distances. When there are two distances, the difference between these two distances is 7, that is, one determines the other, and they are not independent! These two distances (which must be within two months) can be calculated as follows: First, formula (1) gives one distance between these two days, if $y_2 > y_1$, another distance $d' = 7(x_2 - x_1) + (y_2 - y_1) - 7$; if $y_2 < y_1$, another distance $d' = 7(x_2 - x_1) + (y_2 - y_1) + 7$; if , there is $y_2 = y_1$ only one distance $d' = d = 7(x_2 - x_1)$, where the values of y_1 , y_2 are taken as described previously.

According to the formula (1) for calculating the distance between two days, the date x'-y' before m or after m the given date x-y can be determined. Here are examples to illustrate:

Example 1: Find the dates for the 12 days before (4, 5) (the 4th week, Friday). Let the date 12 days before the set date (4,5) be denoted as x-y, according to formulas (1) and 7(4-x)+5-y=12 (2), it is obvious x=2,3 x=2 Substituting into equation (2) yields y=7, and x=3 substituting into equation (2) yields y=0, thus y=7. There are two results: (2, 7) (the 2nd week, Sunday) and (3,7). This problem has two results, which vary depending on the weekday of the 1st of the month. That is to say, for some months, there is one result, while for other months, there is another result.

Example 2: Find the coordinates of the first 5 days before (3, 2) (the 3rd week, Tuesday)

Let the date 5 days before the set date (3,2) be denoted as x-y, according to formulas (1) 7(3-x)+2-y=5 and (3), it is clear that x=2,3. x=2 Substituting into equation (3) yields y=4, and x=3 substituting into equation (3) yields y=-3, thus y=7-3=4. There are two results: (2,4) (the 2nd week, Thursday) and (3,4).

Using the "matrix coordinate calendar" to find the x-y date m days before a certain date is quite easy. While finding the date m days before a certain date using the Gregorian calendar is straightforward, determining the weekday of the date becomes challenging! When the weekday of certain date is not remembered, this is something that the "matrix coordinate calendar" can accomplish, but not the Gregorian calendar! When the weekday of certain date is remembered, this is also more difficult than the "matrix coordinate calendar"!

In formula (1), let $x_1 = 1$, y_1 be the week of the first day of the Gregorian calendar in the current month, and you will obtain the conversion formula from matrix coordinate date to Gregorian calendar date. Note: During the conversion, if the result y_2 obtained is not within the range of 1 to 7, then adjust it by adding or subtracting 7 until it falls within this range.

Example 3: If the 1st of a certain month is a Friday, ① find the Gregorian dates of the 4-3 day of the month, and ② find the x-y date and day of the week for the 20th of the month.

Solution: The 1st of this month is Friday, so the weekly arrangement of this month is 5671234. ① According to formula (1) $m=7\times(4-1)+3+7-5+1=27$ (3 ranks after 7, so add 7; 5 ranks before 7, so remain unchanged) ② Obviously, according to formula (1): $7\times(3-1)+y-5=19$ So y=10,y=10-7=3, the date of the 20th is 3-3 day, Wednesday.

Example 4: If the 1st of a certain month is a Wednesday, ① find the Gregorian dates of the 3-6 day of the same month, and ② find the x-y date and day of the week for the 25th of the same month.

Solution: The 1st of this month is Wednesday, so the weekly arrangement of this month is 3456712. ① According to formula (1) $m = 7 \times (3-1) + 6 - 3 + 1 = 18$. ② Obviously x = 4, according to formula (1): $7 \times (4-1) + y - 3 = 24$. So y = 6, the date of the 25th falls on 4-6 or (4,6), which is the fourth week, Saturday.

This method is obviously smoother and faster than using the Gregorian calendar to determine the week of the 20th and 25th! It achieves seamless integration between the "matrix coordinate calendar" and the Gregorian calendar, and it's very simple. For those who are not familiar with the "matrix coordinate calendar", you can gradually adapt by using the first type of "matrix coordinate calendar" mentioned at the beginning of this article according to the method!

It can be said that there are a total of seven "matrix coordinate calendars", each determined by seven weeks arranged in the following order: 1234567, 2345671, 3456712, 4567123, 5671234, 6712345, and 7123456! These seven date arrangements can represent all dates, which is the essence of the "matrix coordinate calendar" and demonstrates its superb regularity and logic in representing dates. As long as you remember the week of the first day of the month, which is one of the first digits in the above seven arrangements, you will remember the "matrix coordinate calendar" of that month. Therefore, the most crucial point of this system is to remember the week of the first day of the month. At first glance, this seems troublesome, but in reality, it is quite simple! Because it only requires remembering one number from 1234567. Remembering such a simple number for a month is always manageable. The Gregorian calendar requires remembering thirty days in a month, while the "matrix coordinate calendar" only requires remembering one day in a month. There is no comparison between them. It is simpler than asking "What day was yesterday?" and answering "It was Tuesday". In this way, this matter is not important, and it can be unconsciously remembered.

If you mention the 20th of last month, August 20th, or the 3-6 date of next month, etc., it's better to check your calendar, because there's plenty of time and it won't cause any delay! If you insist on calculating, it will be more harm than good! If you

also mention that August 20th is Friday,that's great, because it's 3-5 days! In this way, we can also find out the day of the week on the 1st of this month. The process is as follows: Assuming the 1st of this month is a Monday, then according to formula (1), we get:

$$7 \times (3-1) + 5 - y = 19$$
, $y = 0, y = 0 + 7 = 7$

So, the 1st of this month falls on Sunday, the 1-7day.

This method demonstrates that as long as you know the Gregorian calendar date and its corresponding week-day of any given day, you can immediately calculate the weekday of the first day of the month, thereby obtaining the week or date arrangement for that month. Therefore, it is not necessarily as crucial as before to know the weekday of the first day of the month; as long as you know the weekday of a specific day within the month, it greatly broadens the applicability of this system!

If the mobile phone adopts a "matrix coordinate calendar", the aforementioned calculations are no longer necessary, and even the determination of the day of the week for the 1st or any other day is not required! This is because, based on the exceptional orderliness of the "matrix coordinate calendar", one can quickly calculate and locate information just by looking at the mobile phone, which is not possible with traditional calendars! Of course, if the mobile phone is not available, the aforementioned calculations become essential.

It would be very convenient to turn the "matrix coordinate calendar" into a mini matrix card. The first day of a month may fall on any day from Monday to Sunday, with a total of seven possible scenarios (1-7). Therefore, for a "gold card" with a 31-day month, seven cards are sufficient. For a "silver card" with a 30-day month, the 30th day is marked in gray to indicate that it may or may not be useful. For a 30-day month, the number 30 on this card is useful; for a 29-day month, it is useless; and for a 28-day month, the entire fifth week, including the 29th and 30th, is useless. Since 28-day and 29-day months occur at most once a year, this is easy to handle. Therefore, seven silver cards are also sufficient! Of course, it would be better to use erasable materials for erasing. Alternatively, the "silver card" could be marked with: "For a 29-day month, the 30th is useless; for a 28-day month, both the 29th and 30th are useless." In this way, these 14 calendar cards will suffice for ten thousand years!

Based on the remarkable uniformity, symmetry, and regularity exhibited by the "matrix coordinate calendar", it is entirely feasible to remove the Gregorian calendar dates and x - y days from it, thus creating a calendar without numbers, while preserving its functionality as a calendar! If the corresponding lunar calendar dates are marked on this calendar without numbers, it not only simplifies the Gregorian calendar but also highlights the lunar calendar. This is particularly meaningful in situations where the traditional lunar calendar is emphasized, such as in certain occasions in China!

This system will represent the greatest simplification in human timing since the invention of Arabic numerals! Compared to traditional calendars, it has only advantages and no disadvantages, making it extremely perfect! Traditional calendars require dealing with primitive, irregular large numbers (dates) and additional positioning every time, while this system encodes irregular large numbers (dates) into regular, small-scale dates, making x - y positioning no longer a problem and calculations simpler! Therefore, x - y dates will eventually replace Gregorian dates. Even if one insists on using traditional calendars and denies the "matrix coordinate calendar", there is nothing wrong with that! Finally, a reminder: when you see 3-6, immediately think of it in your mind as being in the third week and between the 15th and 21st. To determine which day it is, additional conditions need to be added, such as specifying the day of the week for a given Gregorian calendar "date after or remembering the week of the first day of a month", that is, giving a fixed month.

January 2026	February 2026	March 2026
1-4 1-5 1-6 1-7 1-1 1-2 1-3	1-7 1-1 1-2 1-3 1-4 1-5 1-6	1-7 1-1 1-2 1-3 1-4 1-5 1-6
2-4 2-5 2-6 2-7 2-1 2-2 2-3	2-1 2-1 2-2 2-3 2-4 2-5 2-6	2-7 2-1 2-2 2-3 2-4 2-5 2-6
3-4 3-5 3-6 3-7 3-1 3-2 3-3	3-7 3-1 3-2 3-3 3-4 3-5 3-6	3-7 3-1 3-2 3-3 3-4 3-5 3-6
4-4 4-5 4-6 4-7 4-1 4-2 4-3	4-7 4-1 4-2 4-3 4-4 4-5 4-6	4-7 4-1 4-2 4-3 4-4 4-5 4-6
5-4 5-5 5-6		
April 2026	May 2026	June 2026
April 2026 1-3 1-4 1-5 1-6 1-7 1-1 1-2	May 2026 1-5 1-6 1-7 1-1 1-2 1-3 1-4	June 2026 1-1 1-2 1-3 1-4 1-5 1-6 1-7
-	•	
1-3 1-4 1-5 1-6 1-7 1-1 1-2	1-5 1-6 1-7 1-1 1-2 1-3 1-4	1-1 1-2 1-3 1-4 1-5 1-6 1-7
1-3 1-4 1-5 1-6 1-7 1-1 1-2 2-3 2-4 2-5 2-6 2-7 2-1 2-2	1-5 1-6 1-7 1-1 1-2 1-3 1-4 2-5 2-6 2-7 2-1 2-2 2-3 2-4	1-1 1-2 1-3 1-4 1-5 1-6 1-7 2-1 2-2 2-3 2-4 2-5 2-6 2-7

July 2026	August 2026	September 2026
1-3 1-4 1-5 1-6 1-7 1-1 1-2	1-6 1-7 1-1 1-2 1-3 1-4 1-5	1-2 1-3 1-4 1-5 1-6 1-7 1-1
2-3 2-4 2-5 2-6 2-7 2-1 2-2	2-6 2-7 2-1 2-2 2-3 2-4 2-5	2-2 2-3 2-4 2-5 2-6 2-7 2-1
3-3 3-4 3-5 3-6 3-7 3-1 3-2	3-6 3-7 3-1 3-2 3-3 3-4 3-5	3-2 3-3-3-4 3-5 3-6 3-7 3-1
4-3 4-4 4-5 4-6 4-7 4-1 4-2	4-6 4-7 4-1 4-2 4-3 4-4 4-5	4-2 4-3 4-4 4-5 4-6 4-7 4-1
5-3 5-4 5-5	5-6 5-7 5-1	5-2 5-3
October 2026	November 2026	December 2026
October 2026 1-4 1-5 1-6 1-7 1-1 1-2 1-3	November 2026 1-7 1-1 1-2 1-3 1-4 1-5 1-6	December 2026 1-2 1-3 1-4 1-5 1-6 1-7 1-1
1-4 1-5 1-6 1-7 1-1 1-2 1-3	1-7 1-1 1-2 1-3 1-4 1-5 1-6	1-2 1-3 1-4 1-5 1-6 1-7 1-1
1-4 1-5 1-6 1-7 1-1 1-2 1-3 2-4 2-5 2-6 2-7 2-1 2-2 2-3	1-7 1-1 1-2 1-3 1-4 1-5 1-6 2-7 2-1 2-2 2-3 2-4 2-5 2-6	1-2 1-3 1-4 1-5 1-6 1-7 1-1 2-2 2-3 2-4 2-5 2-6 2-7 2-1

Copyright: ©2025 Zhou Zhongwang. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.