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Abstract

TWe start with a time evolution equation in nonequilibrium statistical mechanics and study the conditions
under which an approach to equilibrium results. This study supplements the H-theorem approach from the
Boltzmann equation.
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Introduction

PHYSH classification: kinetic theory

Review of Time Evolution of the Single Particle Distribution Function

We follow definitions and conventions in [1,2] and review them for clarity and consistency with previous
results.

Let f(r,p,t) be the single-particle distribution function of a many-body system. It represents the probability
that at a particle in location r possesses the momentum p at time t. We use the phase space variables r=(x-
y.2),p=(p, p, p,) in keeping with kinetic theory. Later, we will replace the average momentum divided by
the particle mass m with velocity. Using factored initial distributions for the initial data, that is, f, (r,r)=f, (r)
f, (r') , etc., we start with the equation derived in [1,2]:
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All distribution functions on the right-hand side come from initial data. Eq. (1) drops an infinite number of

terms of order (ai)n for n=3..c0 . We will calculate averages of (1,p,p?) , so that using integration by parts,
p

the contribution of an infinite number of terms in addition to above is zero, effectively truncating the series to

six terms due to the vanishing of the momentum distribution at the boundary of the momentum space. We use

the operator L, = %% .n, 1is the average particle density. V(r-r" ) is a general form of the pair-potential

of two particles located at r,r" . We follow Cartesian dot product conventions. Anticipating results presented
in Section 2, we remark this early that the first term of Eq. (1) describes an ideal gas.
We analyze each of the six terms in Eq. (1):
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2,3 differ only in the time integrals
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For an initially uniform system, only the first and sixth terms are non-zero. The most general initial data ac-
tivates the second, third, fourth and fifth terms of Eq. (1)

Further Analysis for General Pair Potential

Our analysis depends on the assumption of product forms of the initial data: f(r,r")=f(r)f(r" );f(r)=f(x)f(y)f(2);
o(P.p)=e(P)(P);9(P)=0(p, JP(p, )o(p, ),V(r-r')=V(x-x' )V(y-y' )V(z-z). From a physical standpoint, these
product or factored forms for the initial data and pair potential are not unduly restrictive.

We further introduce the definitions
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to rewrite the time evolution of the single-particle distribution function. The volume of the system is 8XYZ.
The definitions will help us determine the conditions necessary to study the approach to steady state of the one

particle distribution function and hydrodynamic variables.

The six terms of the distribution function are rewritten as
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In all equations, the large brackets enclose sums, not matrix elements.

f3 =n, fotdsl 1051 ds,e SzLo S1

(14)
2,13 differ only in the time integrals.
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The above rewrite of older work [1,2] facilitates further analysis of our results.

Symmetry Arguments from Initial Data
When the initial data is symmetric in x,y,z , we find that
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Eq. (22) is a general result for any reasonable pair potential and initial data symmetric in X,y,z .
Finding complete solutions of the time evolution becomes an implementable analytic or numeric procedure

consisting of these steps: (1) choose the initial data; (2) perform space integrations over x',y',z' , (3) apply the
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free particle shift operato (3) perform the time integrals; (4) followed by momentum
integrals. Steps 3 and 4 may be reversed. We thus have a prescription for generating solutions of the single
particle distribution function. The result of the above steps still requires work, dictated by chosen physical
applications, of which there will be many. In another paper, we will model a one-dimensional shock wave.
We invite readers to generate solutions using our initial value approach.

Approach to Steady State
The time derivative of each of the six terms of our time evolution equation are:
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If the system is bound, the ballistic term eventually hits the boundary and goes to zero under the limit t>eo, a
limit that we will take for all the terms that follow.
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Eq. (25) will be zero for a uniform system.

Note that L, = P2
mar

The second term also goes to zero for
Next, the third term also goes to zero

a uniform system.
for a uniform system:

J. of Mod Phy & Quant Neuroscience

Vol:1,3. Pg:9



Research Article Open Access

af3

t
—— = -n, | ds,e S2LoS3
at °L

[ a p, 90 p, 0 p,3\7
W("’X)Z(}’-”Z(Z-Z)a(ﬁa 3y iaz)
X

(&i py 9 &3)
madx mady moz

5]
53 = +W(y,}’)Z(x,Z}Z(Z,Z)£

¥
a (&i_'_py d p, 3)

op, dy " maz

F@ep)

W D2 DZGY) madx  mady maz

(26)
where again

of(x')

ax' 0

X
W(x,X) = J dx'V(x — x)
—-X
@7)
Y
mmﬂ=J'www—fﬁww
=Y

(28)

The fourth term
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again not necessarily zero at this point unless Z(x,X)=2(y,Y)=Z(x,X)=0 .

If both W=Z=0 the first two terms of time derivative of the distribution function sum up to
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which, for an initially uniform system goes to zero as t—oo . A steady state is reached. This is a rigorous result
when W=Z=0. It would be desirable to generalize the result without this condition and prove the equivalent
of true ergodic behavior.
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