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Abstract

Object of this work is to find out the reason, why we get only nearly correct results with calculations using
natural constants. The possibility to increase accuracy is analyzed in order to obtain more exact results than
with the CODATA values. A special role in this connection plays the electron.

The calculations are based on the model published in [1] and as the latest version in [6]. The idea stems from
Cornelius Lanczos, outlined at a lecture on the occasion of the Einstein-Symposium 1965 in Berlin [2]. The
model defines the expansion of the universe as a consequence of the existence of a metric wave field. That field
also should be the reason for all relativistic effects, both SR and GR.

In the context of this work the properties of the electron are analyzed with the result, that it'’s well suited as a
scale basis of the metric system. Furthermore, some weak points of latter one has been found, being the reason
for the imprecise results when using the CODATA values. The reason are fixed values used to the definition of
base units, which in turn depend on other values as well as on time and on the reference frame. In the end a
consistent system is presented, which yields exact results of the basic natural constants, with which nearly all
other natural »constants« can be calculated by means of five fixed values only. The bottom line is the meaning
of the Planck-units and the electron mass as glue to the reference frame. Exactly set up the system would allow
the calculation error to be reduced to almost zero, as the errors of different measured values are not “passed

through”.
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1. Preamble

Object of this work is to find out the reason, why we get only nearly correct results with
calculations using natural constants. The possibility to increase accuracy is analyzed in order
to obtain more exact results. The calculations are based on the model published in [1] and in
latest version in [6]. The idea stems from Cornelius LANCZOS, outlined at a lecture on the
occasion of the Einstein-Symposium 1965 in Berlin [2]. The lecture is also prepended the
work in [1].

The model defines the expansion of the universe as a consequence of the existence of a
four-leg-field, being the reason for all relativistic effects, both SR and GR. Its temporal
function is based on the hypergeometric function (F;. The special properties of that field lead
to an increase of the wavelength. The phase angle 2mot = Q,, being identical with the frame of
reference, plays an important role in this connection. It has an effect on all scales inside the
system with it.

The phase rate of the propagation function is equal to the reciprocal of PLANCK’s smallest
increment rp. Even the other PLANCK-units are the base of the model being functions of space,
time, distance and speed. A different definition of the PLANCK charge is used in the form
qo = +h/Zy. At intervals of ry special vortices are collocated in the form of a cubic face-
centred crystal lattice (fc). LANCZOS called them ,MINKOWSKIan line elements, which are
only approximately MINKOWSKIan®, here abbreviated as MLE. Thus it’s rather about a
physical object and not about that, the MINKOWSKIan line element is actually defined. I
nominated the whole wave field as metric wave field (metrics).

I already set up a scheme in [1], with which most of the universal natural constants in the
metric (SI)-system could be calculated, on the basis of only five fixedly defined values. But
accuracy left a lot to be desired. As part of this work the properties of the electron are
analyzed in detail with the result, that it’s well suited as a scale basis of the metric system.
Furthermore some weak points of latter one have been found, getting in the way of a further
improvement of measuring accuracy.

It’s mostly about fixed values used to the definition of base units, which in turn depend on
other values as well as on time and on the reference frame. Since these dependencies were
unknown so far, the arbitrary lock-up of specific values leads to unreckoned deviations during
the verification of measurements of other labs, so far characterized as ,,inaccuracies of
measurement®. Someone indeed supposed the deviations to be based on hitherto undiscovered
particles or interactions. In the course of this work the SI-system itself is worried out to be the
real cause. It’s like a out-of-tune piano, I recognize the melody, but it sounds somehow crazy.
In the end a consistent system is presented, which yields exact results and with which nearly
all other natural »constants« can be calculated by means of only five fixed values, the so
called subspace values.

One distinctive feature of the model is, that the so called subspace — the space, the metric
wave field propagates in — among Ko, and €, disposes of a third property, the specific
conductivity i in the region of 1.37-10>Sm™". It also generates expansion. All four values
and with it even c are »hard-wired« and do not change at all. Whether and how it doesn’t lead
to contradictions with the propagation of »normal« EM-waves, is not subject of the work on
hand. According to the model they propagate as overlaid interferences of the metric wave
field and not directly within subspace. Even all living processes take place within the metric
wave field and not within subspace. See [6] for more detailed information.
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2. Fundamentals and hypotheses

Before we get to the actual calculation, it’s necessary, to define certain base items of the
model, mostly without derivation. Read more about this in [6]. The PLANCK-units, as well as
the base items of the theoretical electro-technics play a very special role in this connection.
For this reason, as usual there, I’'m using the letter j instead of i or i as usual in mathematics.
In the first sections still the values of the universal natural constants calculated in [1] table 10
are used, based on the model evolved there using the CODAT A, 14-values. For the gravity
constant G the BRUKER-value has been used initially.

2.1. Definition of base items

At first the base items of the theoretical electro-technics. They apply independently from
the model (1). Beneath (2) the most important PLANCK-units are shown. The introduction of
the specific conductivity of the vacuum turns out to be the missing link among each other and
even to other values.

c = ! 7 = Ho _ h _ P _ E Ly =pory Co=¢1y 1)
A o€ ’ €, G, d H Ror = 1/(K,Tp) Series resistor

2
r0=‘/G—3h= 2t m0=1/@ = BoS% Qo=yhZy qy=\H/Z, (2)
c [T G V4

0

One single line-element can be specified by the model of a lossy oscillating circuit with
shunt resistor. One special property of that model only is, that the Q-factor of the circuit
equals the phase angle 2wyt of the Bessel function. It applies Q,=2w,t. The value ®,
corresponds to the PLANCK-frequency in this connection.

Sy iy NN S N Uy (< 3 )
“Nan \2et  JLC, 1 A 2k,

R R 2 2wt
Q0= 2(,00t = KOrOZO = h_z() = 0 _ C_z — Ky (4)
P Z() v €y
fy 1 g 1 1 £, 1 o

H = — = = — = = = — =
’ T R,C, K, LG, Ko“or%) Ky 2T Q,

()

The numeric value of Qg according to table 1 is about 7.5419-10°° and depends on the real
value of Hy. Except for the quantities of subspace o, €, ko and ¢ all other ones are functions
of space, time and even of the velocity v with respect to the metric wave field. The reason is,
that the spatiotemporal function of the metric wave field should emulate the relativistic
effects and it really does. The GR-dependencies aren’t considered here furthermore.

That makes the PLANCK units depend on the frame of reference, which is even defined by
them. And all of them are bound by the phase angle Q,. But the variations mostly cancel each
other creating the impression, that the values are constant. Reference-frame-dependent values
are marked with a swung dash e.g. Q, being constants by character. Still important are the
values with a phase angle Q,=1. They describe the conditions directly at the particle horizon.
They are constants too, because they are defined only by quantities of subspace. Thus, they
are mostly qualified for reference-frame-independent conversions of certain values, so-called
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couplings. One example is the conversion of the magnetic flux ¢; to the magnetic field
strength H;=¢1/(por7) as basis of a temporal function containing reference-frame-dependent
elements (ro). r; would be the so-called coupling-length then. Expression (8) shows the
relations to the PLANCK-units and to the values of the universe as a whole.

1 l1¢ K 1
T, = M, = u.x A t, = -2 o =2 =— 6
1 < Z, ‘ 1= HoKy ‘ 1 2%, ‘ 1 £, 2t, (6)
RZQOrOZQSrl ‘ M, :Qomo ‘ T=Q0t0=Q§t1 ‘ W, = Qo(’)on(Z)Ho (7)

¢ = JTZ() ‘ q,=+ hl/Zo ‘ h = hQ, ‘ Ky = Hocc};lHo (8)

The action quantum 7, and 4, is not a quantity of subspace, but the initial action, our universe
»got« in the early beginning. That value is the only one »set-screw«, with which »one« could
exert influence on the future appearance of the universe. All other values are »hard-wired«
with Q, depending on space and time. There is no »fine-tuning« either. With expression (2)
right-hand and (8) it’s about an effective value, i.e. 7, ¢, and q, are temporal functions too.
For section 3.3. still the definition of NEWTON‘s gravitational constant:

’ 2¢’t R
G= % - £t _ 22 2l (868 [6])
pok o iH Lok ht M, m,
2.2 Temporal function

We get the exact temporal function for the magnetic flux ¢, by solving the differential
equation (9). It is based on a lossy oscillating circuit with expansion, i.e. the single
components R, L, and C, are changing with increasing r,. Expression (9) mainly differs from
a normal oscillating circuit without expansion, with harmonic solution by the factor before ¢,
1 with expansion, 2 without.

.. . 1k
Pot+ Py +——"0, =0 9)
2 ¢,
In contrast to the expression without expansion there is no drop-down in the resonance
frequency ®o with (9), normally caused by the influence of the loss-resistance Ry. But we
obtain another as solution:

y = a,,FGL—Bx) with a, = ¢,/2 B=%? x=t (10)
According to [4] applies :

JFGbix) = T(b)(jx)" T, ,(j2x?) Hypergeometric function oF (11)
J. 1s the Bessel function of n® order, thus

JFiGL=Bx) = T()(jBx) J,(v/4Bx) (12)

y = a,J,(¥4Bx) (13)

¢y = ao%[d%] = 2,J,(Q) (14)

Since it’s about a differential equation of 2" order and the grade of the Bessel function is
integer, the general solution is:
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©, = ¢,(c,J,2w,t)+c,Y,(2w,t)) (15)

The factors c; and ¢, may be imaginary or complex even here. According to [5] it’s more
favourable, if we consider both Hankel-functions:

H(x) = J,(x)+Y,(x) and (16)

HP(x) = J,(x) =Y, (x) (17)
as linearly independent solutions composing the general solution

y(x) = ¢H(x)+¢,HP () (18)
with it. Then, the general solution (15) reads then:

P = ¢,(H2oyt) + HP2o,t)) (19)

For our further examinations, we set c; and ¢, in (18) equal to 1 for the moment. Then we get
as specific solution (20) and for approximation, envelope curve and effective value:

. . 21, t
0, = §;J,20,t) = ¢, Re(HY (20,t)) ®y =4, [ - ] (20)
0
cos (20)0 EJ Approximation 21
1/203
Py = 4|— i Envelope curve (22)
T [2wm,t
¢, = P ®y ~qp ~ QB% h=q,q, ~Q, Effective value (23)
2m,t

The exact course of ¢ (20), as well as of the approximate function of the envelope curve (22)
and of the effective value (23) is shown in Figure 1. Also depicted are the original Bessel
functions, which you can't see however, because they are completely covered by the
approximation.

6,

ash Re (HY(/x))

e

R
ANR NIV N N
TAY N S

Im (HP(Vx)) [z x= 2Kt
\F | . n S,

s[5

alw

-

PN

Figure 1
Course of magnetic flux as well as of approximation-
and envelope-functions across a greater time period
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Thus, with greater arguments, no differences are statable, neither in the amplitude, nor in the
phase. Most important for the quality of the approximation is the course in the striking
distance of t=0. It is shown in Figure 2 and it turns out to be very good until the particle
horizon at Q,=1. All data so far are summarized. See [1] for details and the exact derivation.

8.5+
Envelope curve

Effective value

5

Re (H')(Vx))

Particle horizon

-1.5¢

Figure 2
Course of flux as well as of the approximate-
and envelope-functions nearby the singularity

2.3. Propagation function

2.3.1. Exact solution

For further contemplations we need the propagation function of the metric wave field in
any case, as well as the values connected with it. You can read from section 3 on if you are
already familiar with the model.

2.3.1.1.  Temporal function

In contrast to MAXWELL, which used the first term of the harmonic solution (108 [1]) ei®t
as ansatz, we now choose the first term of expression (19), obtained as an independent
solution of the differential equation (9). It’s about the temporal function of the magnetic flux
¢ there, relating to one single MLE, from which the charge q, can be derived. For the
propagation function however we need the magnetic and electric field strength H and E. The
relation:

= J BdA with B=poH leads to H| = Po_ (24)
A

Because of r, indeed the right-hand expression depends on the frame of reference. Moreover
we are rather looking for the starting value at T=0. The temporal function is just known.
Hence, we must carry out a reference-frame-independent coupling only. The coupling-length
1k 1s not arbitrary in this case. Because the imaginary part of the Hankel-function is coming
from infinity, the starting value ¢, is defined at the point 2w t=Q,=1. The coupling-length at
this point is r; as already predicted more above. This value is denominated as H; resp. E;.
With respect to the fact, that (23) is an effective value, we obtain the following relations:

J. of Mod Phy & Quant Neuroscience Vol:1.3, Pg: 7
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q, 1 o 0
E =52 =_—-—"L2 H = L2 (25)
' Sorl2 Z, Morlz ! lvlorl2
E = E, H|’ Qo) H = H,H 2wt (26)

Here again, the real part of the vector corresponds to an orientation in y-, the imaginary one
in z-direction, x is the propagation direction. As already stated, there is an analogy between
the exponential function e2@t and the Hankel-function. Both are transcendent complex
functions and periodic respectively almost periodic. Of course, there is also a solution of the
MAXWELL equations for (26). The detailed derivation can be read in [6] once again. Important
is the complex wave propagation velocity ¢ and the field wave impedance Zg:

1 ) (¢)]
c = — with @ = %QO) Q, = 2wt (27)
jo,t . [H@(zwot) 2 H 7 (Q,)
HY 20,t)
. z, - 21 (28)
Jogt \1-0° Jo it {1-0°

We see that the propagation-velocity converges to zero for large t. The same is applied to
the field-wave impedance too. We have to do it with a quasi-stationary wave-field (standing
wave) filling very well the requests on a metrics. The propagation-velocity is complex again.
A decomposition into real- and imaginary-part works out quite difficult, but it’s mathe-
matically possible however. The solution for ¢ reads:

J,(Qy)1,(Q,) +Y,(Qy)Y,(Qy) 1 > o >
e ST e —— , = =4 (1-A+B**+(2AB
2Q)+Y2(Q,) o = 5l ) +(248)
(29)
_ 32(Q0)Yi(Q) = 14(Q)Yx(Qy) Lo oL 2AB
B J15(Qy) +Y5(Q,) Po 2‘ =@ 0 1-A4+B?
! = m = L 2 RhoQ = 2/#/Abs[Sqrtl1 - (HankelH1[2, #1/HankelH1[0, #1)~2]1] &
PoQ, C Q,

(30)

b, = %arctan@ = arg{

T
] - PhiQ = Argl1/Sqrtl1 - (HankelH1[2, #]/HankelH1[@, #])~2]] -w/2 &

1
J1-0?

The factor % arises from the 4™ root. Expression (27) may be split into a real- and an
imagmary part (31). A starts at +oo converging to —1. The course resembles the function
1/A"—1 approx1rnately, which cannot be used well as approximation however. B has a course
like 1/B* and is converging to zero. The same is applied to 6 then. The bracketed expression
converges to one with it. For Q,>5 the approximation p,Q,=Q, applies with A<1%.

C 1 | C jLarctan Y j
c = [cos—arctan9+Jsmiarctan(%) = — ehrio _Z it (31

poQo poQo poQo

Unfortunately (31) cannot be transformed into an expression similar to (179 [6]) with area-
functions, so that the ambiguity of the arctan-function leads to a partially wrong result. Thus
we should better calculate with the following substitution:

' Duetothe inaccuracy of the modulus of the Hankel-function for derivatives >0, the results of the AB-expressions of (29) slightly differ from
the (30) ones which are more exact. Thus, the calculation of all values and graphics is switched over to (30) from this edition on.
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arctan0 = arg 1—A°+B’ +j2AB argc = %arccot 0— % (32)

While the real part of ¢ is defined as the velocity in propagation direction, the imaginary
part can be interpreted as a velocity rectangular thereto. The appearance of an imaginary part
in ¢ means also that there is an attenuation anywhere (refer to Figure 4). A numerical
handling of (27) even can be processed with »Mathematica« resulting in the course figured in
Figure 3. Since the Hankel-functions, with larger arguments, can be expressed well by other
analytic functions, we will try to declare approximative solutions later.

We have to do with a case of inversion here. This manifests by the fact that the
propagation-velocity first ascends from zero to an amount of 0.851661c¢ (at 0.748729t;) and
then descends again asymptotically to zero.

0.8516613502973192 H; T g
C
@.8652907287581294
\\ =
ray
8.5
N @.29003476834659825
Realteil
M Real Part ZIng
—
—l L 1
-18 3 10
——
2Kt
lg 0
-@.3712520774085514 &,
After BB
L B.E -
0.3239628159089714 ~| - 8.117777791407423
0.8944707172977895 ~_ L
~4 |
-0.8505894000896363 5
Figure 3

Propagation-velocity
in dependence on time (logarithmic time-scale)

With it, the world-radius (wave-front) of this model doesn't expand with ¢ but with 0.851661c
only, which figures no violation of the SRT anyway. However, a contradiction arises to the
usual definition R=cT, which has been solved (see section 3.4. or [7]).

2.3.1.2.  Propagation rate

To specify the propagation-function we need both, the temporal function and the
propagation rate y=o+jB. The normal form of the propagation function is given by:

E=Ec"(d) = ET = g (33)
Contrary to (33) the argument in the case with expansion is real. S(gictly speaking, namely it's
not the Hankel-function but the modified Hankel-function Z , = 1(z)—jK,(z) being the
equivalent of the exponential-function. It is valid for [o(z)=Jo(jz) however only for pure
imaginary arguments. With complex arguments, the real part cannot be drawn to a position
ahead of the Hankel-function as usual with the exponential function, since the power rules
aren't applied to Hankel-functions anyway. It's possible first with larger arguments z. In

J. of Mod Phy & Quant Neuroscience Vol:1.3, Pg: 9
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general the modified Hankel-function isn't used however. Therefore, we use for the base the
»ordinary« Hankel-function adapting the propagation-function accordingly. To avoid contra-
dictions with the classic definition of propagation rate —real-part equals attenuation rate,
imaginary-part equals phase-rate —the propagation-function should read as follows then
(analogously for H):

E=EH" [mo (t—%]] = EHQQot—jyx) (34)

This is not quite the classic expression for a propagation-function. Attention should be paid to
the factor 2 which can be assigned both to the frequency, as well as the time-constant. With
the definition of propagation rate y=a+j it obviously belongs to the frequency since y
depends on phase velocity dx/dt, but not on the half of dx/(2dt). By equating both arguments

of (34) one gets then:
y=- 2‘;’0 = jkzZA1-0° (35)
From (31) the reciprocal of ¢ can be determined very easily. Then we get for y:
T %ty cos larctan 0 — jsin 1 arctan 0 (36)
c c 2 2
. 20t 1 .1
Yy = oatjf = -2wy/c M(cos EarctanO—Jsm Earctane (37)
C
1 .1
Y = PoKoZ,| cos 5 arctan 0 — jsin 5 arctan 0 (38)
Démpfungsmaft o
Attenuation Rate
P S T E S H S RS
1 2 3 4 5 6 7
F —
-1 2t
E E[J
L After BB
_2 j
5f
Figure 4

Phase-rate and attenuation rate
in dependence on time (linear scale)

With accurate contemplation one recognizes that o and 3, evaluated by its action, are
exchanged in fact (o = phase-rate, § = attenuation rate). This is caused thereby that a rotation
of about 90° (j) occurs during propagation (Figure 7). x turns into y and y into —x. The atten-
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uation a, starting at the point of time t=0, starting off infinity, is decreasing exponentially. To
the present point of time, one can say that there is basically no attenuation anyway. This
doesn't apply however considering cosmologic time periods.

At the point of time 0.897t; (Q=0.947), the function § has a zero-passage. This supplies
the somewhat particular course in logarithmic presentation (Figure 5). It's about a phase-jump
of 180° in this case. From the point of time 100 t; on we are able to declare, referring to
Figure 4, the following approximation:

on — F Attenuation Rate

I Dampfungsmal o. 2 lg Q 0

< —

1 L L L 1 L L 1 L 1 1 L L
-5 i 5 —

2Kt
L 1 g Z7o"
-1 &

After BB

Figure 5
Phase rate and attenuation rate
in dependence on time (logarithmic)

I K,Z,
~ 1+« Z 4/—0 1+ 39
(I+)xeZ, 2t ~ (1+)) ——= 2o (39)

These relationships can be derived as well graphically from Figure 4, as explicitly using (35)
by application of (42). However, it's necessary to multiply (35) with J» in order to take
account of the 90° turning (Flgure 7). Then, to the approximation y=2w,/c is applied. Phase
rate and attenuation rate are the same from 100 t; on approximately. This is the behaviour of
an ideal conductor.

2.3.2. Asymptotic approximation

In [23] an asymptotic formula for the Hankel-function is declared. It reads:

H(vl) zZ = \/zej(z_zv_“] [1+O z! ] for)0<z<oo (40)
nz

Put into (27), one sees that nearly all expressions can be reduced. The root-expression R
converges to a value of:

R= 1-1b0,0)=0,a ™~ 20,0™)-20,a) (41)

The root-expression result just only depends on the remainder terms which is tending to zero
as well. Therefore, this base is not suitable for our purposes.
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For y, we have already found an approximation, still remain ¢ and Zp. In Figure 3 we
already depicted the course of c. To the graphic determination of an approximation however,
we require the double logarithmic representation (Figure 6). To be considered, is the fact that

the imaginary part is actually negative.
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Figure 6

Propagation-velocity
in dependence on time (double logarithmic)
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At the world-radius, the universe expands with the maximum velocity of 0.851661c, in the
inside with a velocity decreasing more and more. Since the wave count in the interior of a
sphere with defined radius r(c,t) is decreasing, the deficit is balanced by an increase of
wavelength. Outside the wave count ascends continuously due to propagation.

For greater t the expansion of the wave front proceeds nearly rectilinear with an angle of
—45° proportionally t”*. But the behaviour looks somewhat different near the singularity. In
The track-course of a single sector of wave front near the singularity is shown in Figure 7.
We see a kind of parabola, with greater t a hyperbola. And there is a rotation in propagation

direction about an angle of 90°.
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Figure 7
Track-curve near the singularity
in dependence on time

2.34. Approximative solution

Now we want to set-up an approximation for the propagation function. The normal form is
E=F ¢°** with y=a+jp. But with the exact solution (39) there is a case on hand, with which
a and [ contain both damping- and phase-information and the wave function isn’t harmonic
either. That way we aren’t able to form a reasonable propagation function at all.

In the case t>»t; phase- and attenuation rate are of the same size. Thus, the model behaves
similar to a metal. There a does not stand for a damping, but for a rotation, namely as long as,
with vertical incidence, a value of 7 is reached so that the wave exits the metal in the opposite
direction after a minimal intrusion. The depth of penetration depends on the material proper-
ties, the wave length and the angle of incidence. In case of this model the material properties
aren‘t constant either, y decreases with t and x. Hence it suffices to a rotation of 90° only and
the wave remains in the medium (vacuum). In any case, there is a rotation too.

To cope with it, we do a rotation of the coordinate system about n/4. That corresponds to a
Multiplication with /i and we get a purely imaginary solution. So becomes 0=0 and y=jf and
the exponentially related attenuation vanishes. Indeed, we still have to multiply the result
with V2 and to replace x by r. Despite a=0 the amplitudes of E and H are decreasing
continuously. That’s caused by the Hankel-function alone, resp. by the radical expression in
(45). With it amplitude and phase are firmly interlinked (minimum phase system). Now the
rotation angle in space is equal to 6+n/4. But a separation of phase- and damping-information
isn‘t possible yet. But we can work with very high precision using the approximation
equations in this case. To the general Hankel-function H{(ot—px) the following
approximation applies (analogously for H):
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E - EH(ot—px) ~ B [— 2 ™ (45)
(ot —px)

Instead of yx only the product Bx with the phase rate appears in the exponent, since the
amplitude rate is already emulated by the radical expression. With t»0 the angle n/4 can be
omitted. After rotation and transition x—r and 0—2®q turns out:

H =%
2E, i (2ogt--2Br) D onr

—F—FF ¢C
o L ¢
/ — E = =
2C‘)Ot 2[301' ! g Z, &yl

E; is the peak value of E with Qo=1. Indeed are both w=2w, and =2y (with double
frequency even the phase rate must be doubled) no constants at all. That means, they depend
ont and r at the same time, limiting the manageability of the approximation very much. You
can see that also with the phase velocity vph. It is defined in the following manner:

E = E HYQw,t—2B,r) ~ (46)

v, = 20 _2¢ 2|¢| for t»0 (47)

ph B V20t

Thus, the phase velocity is equal to the double absolute value of propagation velocity. That’s
caused by the factor 2, since phasing with double frequency propagates with double velocity
too. For interest, also the group velocity should be stated here:

1
YT 48 do,

= -2|¢| for t»0 (48)

Except for the algebraic sign both results are equal. That means, the propagation takes place
free from any bias. Further to the approximation. With (22) in section 2.2. we had already
found a very good approximation, almost exact, for the same temporal function.

n 2 ej(2w0t+2ﬁox) eﬂ(‘*’(ﬁ*ﬁo“) K.z
E~B |25 _op - with B=-—
T [20,t+2B,x \ 20,t + 2B, 20,t

Now, expression (49) enables to define an equivalent- a=0ay and, with it, even an equivalent-
Yo=0o+]j2Po, in order to get it up to the normal form for propagation functions.

(49)

. 2x,Z,
+)
\/20)0t

N , 1 2,2
E ~ 2E, "™ with y, = 5> ln{2m0t+ Koo ] (50)

\/Zcoot '

That’s already a big step forward. Unfortunately, both w, and y, depend on time. It’s not
critical for 2m,t, because it’s multiplied by t anyway. Else with vy,, it should depend on r only.
To the substitution of t in (49ff) we firstly put (43) left-hand into t=r/|c|. The real propagation
velocity becomes effective here and not vph or vgr. Then we rearrange after t. Putting into
(49) right-hand we get:

2K, t r* 2k
t = L, o= — ot _ 2r'ule i, (51)
c\ g c g,

12 _ l 38 Mgﬁ ngg

1 3 ’ 1
0= 8Ko Z, %ér“t{%% = 2 ‘ B, = 3 21’1”]2 (52)

With it, we obtain for y, and the product y,r the following expressions:
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1 2r | 2 |5
Yo = — In|20,t+|=|* |+j| 5|’ for t»0 (33)
— 2r I, Ir,
2 2
Yol = l ln[2w0t+[g]3 ]+J [2]3 for t»0 (54)
= 2 r] I‘l

Last but not least we can eliminate the time t completely. The value y, is proportional to r

and, even more important, the product yor is proportional to r 3. Unfortunately, as already
sald we can explicitly state yy(r) by approximation only. With the exact function (38) a
separation, especially from t is impossible. But generally speaking, an exact solution is not
required at all, since the approximation yields very good results until a striking distance

to the particle horizon at Qo=1, see Figure 2. Therefore, we will not follow up that matter at
this point.

All hitherto stated approximations are based on the 4D-expansion-centre {rj,r;,ri,t;}. But it‘s
more practicable to find a function, related to another centre. Most suitable seems to be the
point, where we are, the »point being«. At first we substitute the time according to t—>T-+.
The swung dash stands for the initial value at the point t= 0 (nowadays) describing an inertial
system. Hence it’s about a constant. Because of T= tlQo we are able to factor out Q. The
direction of time doesn’t change. To the temporal part applies:

20,t = O, [1+%]; (55)

For the spatial part By we build up. the inertial system once again using the substitution
2 —
ri—>R. Because of R=r;Q,", as well as £ Qy=—T, now we are measuring from the other end, we
can write for 23:

Approximation — Exactly (Qo«10°%) —

2 1
28, =Q|lz==x3 = 0
B =Q 0,70 -Q

Actually I should have to write finstead of r. But because it’s the argument of the function the
tilde has been omitted. The right-hand expression considers the fact, that ro as smallest
increment never can be underrun. The value ay is definitely determined by the envelope curve
of the Hankel-function, else it would be equal to zero. With it, we obtain for y, and the

3 2B,r = -Q,

LIE s6)

2r— r0

R Q°

R

0

product y,r:
1~ t); (2r): :
10 = EIHQO[(I‘F?) (Rj ]+JQO( S j (57)
1. ~ t); (2r): 2r 3
Yol = EIHQO[(“rTj (R] ]+ QO( ] (58)

With ry we have already found one elementary length. But LANCZOS speaks about another
one [2]. That’s the wave length of the metric wave field A=2xn/B. The approximation of Ay
must be divided by 2 once again, due to the double phase velocity. Hence Aj=27/B applies.
To the comparison the expression for ry once again:

2 1
Ay = —ncosec—arctanG(Zth) (59)
p(2w,t)k,Z, 2

by = —F | 2l T ot for wgt>>0 (60)
KoZ, KOZO
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- 1 2kt 20, 2t ©61)
KoZo \ & KoZ, Kok

Though A is smaller than o and not identical to HEISENBERG's elementary length with it.
Ao now is in the range of 10 ®*m. Thus, LANCZOS was wrong in that point. But it only has been
a guess on his part. In fact, it’s about the wave length of the wave function forming the metric
lattice itself. Expression (59) until (61) only represent the temporal functions. Then, the
functions of time and space read as follows.

2 1
Ao = % cosec —arctan0(2m,t —y,r) (62)
Po(20,t — zor) KoZ, 2 -

1
2= L Dot—2p,r (63)

KoZ,

1 2 _
f, =dr = fo[(n%]z—(%}] - 203(;—22;3(; (64)
KoLy

The wave length A of the metrics is irrelevant for the further contemplations of this work,
only Bp matters. The double-bracketed expression in (64) is called Navigational Gradient in
future. It is the essential expression I was looking for.

We only know the local age T, which results from the local HUBBLE-parameter (65). It quasi
represents the temporal distance to the expansion centre. But we are able to determine the
spatial distance to the world radius R. This forms a spatial singularity (event horizon) with it.

w,(H) . 1

2w,t—B,r = with r=0 T=— 65

=fr = 2L - (69)

R =-2D 0% o ith 2,20 (66)
B,H H

s H ¢’ 1
=KZ4/0—=1,—=— 67
o Nk, Gh 1, ©7)

Thus we can get the value of Bp=1/rp even from (39), in that we replace the time by the
HUBBLE-Parameter. For R turns out:

R = —% = —12188010*m = -1291810°Ly = —3.950 Gpc (68a)
R = —% = —1.3480310°m = -1.424910"Ly = —4.36862 Gpc (68b)

The value (68a) is about 12 billion light years according to Table 2 of [6] according to the
standard model. The result (68b) has been calculated using (108) and the CODAT A3
values. The local age has the character of a time-constant and amounts only to the half,
namely 6.6/7.1 billion years. The local world radius is equal to cT. Longer time-like vectors
up to 2¢T are possible because of expansion and wave propagation of the metric wave field.
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3. Electron and metric system

I want to excuse me once again for the iterations, but the previous sections are essential for
the understanding of the following. The CODATA;¢13-values are used from this point on.
There was no CODATAjpa»-list at the time of writing this article, now it is. But I stick on the
2018 values since the latest suffer even more from the errors criticized in this article.

3.1. Physical quantities of special importance
Hence, we want to continue this work with the examination of physical constants, which

have large influence on the structure of our world. Most important thereat are the
dimensionless constants. One of these is SOMMERFELD's fine-structure-constant.

3.1.1. The fine-structure-constant

The fine-structure-constant o is a characteristic fundamental quantity of DIRAC's theory of
the electron. It is a measure for the strength of electromagnetic interaction, i.e. for the coup-
ling of loaded subatomic particles with photons. According to [5] it is defined as follows:

2
o= — = ! = L-0.0917012 = 0.00729735 (69)
4me hc 137.035999084 4n

e is the electron charge in this case. The fine-structure-constant has been well proven with the
description of the decomposition of the atom-spectra (Lamb-Shift) yet. Also, it is used to
explain the dissent between spin and magnetic moment, as it appears with the electron. Now
we want to see, whether there is hidden an additional, essential, more fundamental legality
behind expression (69). It is obviously opportune to calculate on the interaction of electrons
or protons with photons with the electron charge. In section 4.6.3. of [6] however we have
noticed that there is another second charge, namely the charge of the ball-capacitor in the
MLE qq, which is with 3.301378 e near that value (70).

We intentionally use a dissenting definition of the PLANCK charge q, since the generally
accepted definition with o is unfortunate and does not fit the other PLANCK quantities. This
obscures relationships to other natural constants.

@ =)

h
= |— 70
o Z, (70)

With a constant in general, it has no influence on the physical content, if we multiply it
with another constant. Let’s try now, what happens, if we substitute the electron charge in
(69) with qq:

2 2
o= o - " _ 1 0= & (71)
4re,hc 4ne,chZ, 4 4r q,

We have uncovered the nature of SOMMERFELD's fine-structure-constant with it. Following
clear statement applies:

1. The SOMMERFELD fine-structure-constant is the square ratio of electron
charge e and the deviantly defined PLANCK charge q, (of the MLE)
multiplied with a geometrical factor.

The geometrical factor corresponds to the full space-angle of 1sr and is equal to the factor
applied on the calculation of the surface of a ball. This is not further remarkable, have we to
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do it here with the mutual interaction of two different solutions of the field-equations after all.
The first one is the electron (ball), that second one the photon (wave/cube). Indeed, we have
uncovered the nature of the fine-structure-constant with it, but it turns out a new question,
that we have already asked in the course of this work:

1. Why does the electron charge just amount to 0.302822q,?

This is however not yet everything. From this question and the assumption, that PLANCK's
quantity of action is not a constant, arise a row of more questions:

2. Is the ratio constant between both? If yes, why?
3 If no or don't know:
Is it a coincidence that the electron charge is close to qo today of all days?
4. According to which legality does the value of the fine-structure-constant change
or does it remain constant?
5. Which effects does it have on other areas of the physics (atomic-model)?

As fundamental, question 3 crystallizes here, that we cannot answer with absolute certainty
however. With great probability, we can say that there is no coincidence. That would mean
however, that the electron charge is not constant. Before we’ll delve into it, we have to deal
with a second dimensionless value.

3.1.2. The correction factor &

This value occurred with the comparison of several solutions for the HUBBLE-parameter in
[1] and I have already seen it in a publication. Unfortunately, I don’t remember, in what. Even
the search in the internet run into void. Therefore, I cannot tell you the correct name of it. In
any case it’s not identical with the quantum defect. But in succession, it plays an important
role with the set-up of the Concerted System of Units. It is defined as follows:

o = anh = 0.937855101480256 with the approximation (73) (72)
m r.c
2
o =~ L Qy _ 1 A2 2 = 0.942809 A=+5-10" (73)
2 Qy, S 2h3
o . . e o 1
Furthermore, following important relation applies: m, ~ 1836 const
-3 1 47 m,
= 6.84386-10" ~ —— o =— <def (74)
m, 146 o m,

To avoid a circular reference we make use of the right-hand expression (74) to the definition
of 8. Obviously, with & it’s about a correctlon factor which should compensate the
eccentricity between proton and electron in the "H-atom of BOHR‘s classic atom-model, since
m, is not small enough with respect to mp, it wobbles. Well, BOHR’s model is not correct in
fact. Nevertheless, values thereof, such as r., do a good service with calculations even this
very day. That also applies to 6, as we shall see later. Apparently, because of (74) it’s about a
kind of complementary fine-structure-constant. As latest, more exact research [8] suggest, the
ratio m%/mp turns out to be constant. It varies by max. ~5.0-10 a , 1.e. with an Age of only
1.4-10"a it’s quasi constant. I agree with this statement, because this model is based on this
assumption.
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3.1.3. The electron charge

3.1.3.1.  Static contemplation

Already DIRAC has formulated a hypothesis, as per which electron charge is a function of
time, (DIRAC's hypothesis). In his model the gravitational »constant« is not a constant too.
That means, one cannot exclude this possibility and it is worthwhile in any case, to engage
further examinations at this point. If we assume to be no coincidence, that the charge of
electron is near q,, so it's also obvious, to say that a ratio exists between the two values, which
acts according to a certain inherent law.

The definition of qo contains the PLANCK's quantity of action, which is of essential meaning
nevertheless for the theory of the bosons (e.g. photons) as for fermions (e.g. electrons) —
combined with the wave-propagation-impedance Z, of the vacuum. This suggests the
conjecture that both charges are actually one and the same, at which point the electron charge,
on the basis of particular conditions, only seems to be smaller. Therefore we want to examine,
whether it is possible to calculate the electron charge from the charge q, of the MINKOVSKIan
line-element. Let's have a look at the model according to Figure 8 for that purpose.

We have yet noticed that the basic condition of the metrics is located near the expansion
centre (0) at a Q-factor of Q=1/2 (1). The expansion-graph in this area is sketched in Figure
8. Furthermore, we have noticed that there must be something like a basic condition even for
the fermionic matter, whereby we can observe both types of matter only red-shifted through
the /ens (h) of the metrics. It turns out the question: What's the Q-factor, the basic condition
of the fermionic matter is located at?

The most obvious assumption would be, that it is at the point Q=1/2 too. Now, we have
noticed that this point (1) forms the aperiodic borderline case, in which no periodic wave-
function can exist anyway. This however, is a necessary condition for the existence of'e.g. the
electron as matter-wave (DEBROGLIE). Matter-waves are moving, according to our definition,
opposite to the propagation direction of the metrics, which has the consequence, that they
don't move anyway. They persist quasi on the position forming standing waves. Furthermore
arises, that these waves, in contrast to time-like vectors, cannot surmount the (3) point Q=1,
in which a phase-jump appears, since they are been reflected there. With it, a matter-wave
would be »locked up« between the points 1 and 3.

Now, we further assume, that in reality, the electron also has the charge q,, of which we
only can see the share e, since the electron is warped about an angle 3 into the phase space in
reference to the observer, who is positioned far on the r-axis. Just like the universe the
electron is a four-dimensional object. Because the charge q, is evenly distributed over the
surface, it is quite possible, that we may even be able to see only a part of the surface, and
with it, only a part of charge, due to the curvature-ratio.

The (shifted) r-axis is the asymptote of the expansion track-curve. It behaves like a
parabola near the origin, farther, like a hyperbola (Figure 7) and on a large scale like a 1:1
straight line in the 4™ quadrant (Figure 27 [6]). We are primarily interested in the angle ¢,
which results from the argument of the integral of the complex propagation velocity ¢ of the
metrics (27). It applies:

T

1 dt
20,t \[1-0%(2w,1)
0

At this point the integral of ¢ and not the value itself comes into effect, since not the velocity
¢ of the electron but his location is of interest for the further calculations. With the help of
(30) we are able to transform (75) in the following manner:

T
€ =arg J'gdt =—argj2 (75)
0
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=
-

g =—arg c'f ! [cos 1 arg 0+ jsin 1 arg e]dt =arg 2CJ‘ L e g, (76)
P, t 2 2 w,tp,

The integral with respect to time is not particularly well-suited however, since the frequency
wp itself is a function of time. Therefore we substitute t by the phase-angle Q=2w,t obtaining
for the angle € and for the amount of the zero-vector ry:

2kt 1 21<0

Q= dQ== £ dt di=22.QdQ (77)
€ 2\ g, K,
1 j%a.rctan 0 1 j%amtan 0
e = argr, | —e dQ = arg | —e dQ (78)
Po Po
0 0
Q 1 jlamtane R(Q) H.R 3 1
I, = Zrl’f—e2 dQ Z=—2 = = =Q° (79)
o Po 5(Q) Hyr, 2

with r=1/(k¢Zo). Although, the left expression of (79) is not yet complete. It only describes
the propagation of the wave. It still lacks the expansion-share Z of the constant wave count
vector rk across the entire world-radius R, otherwise applies Z=2mQ"”* see (328 [1]). It has
the characteristic of a zoom-factor and is to be placed before the integral, since it influences
all elements dr simultaneously (see section 4.5.2. [6] or [7]). Altogether applies:

1Q 1
3 EJ- 2arctan6
0

2

.1 .1 .
—JE(arg6+7c) = Jzarctane =jo, (80)

Now certainly an analytic solution of this integral can be found, if there is enough time. This
however would go beyond the scope of this work. Therefore, we determine the integral with
the help of the »Mathematica«-function NIntegrate numerically. With it however the function
1/po makes particular difficulties, namely because of the many nulls of the Bessel function. In
order to make possible an exact solution nevertheless, we substitute the expression 1/po by an
interpolation-function with list (function Interpolate). Then, expression (78) Ep[Q] and (80)
Rn[Q] can be calculated as follows (without r1):

ctMc = Function[-2 1/#/Sqrtl1 - (HankelH1[2, #]/HankelH1[0, #])"~21];
PhiQ = Function[If[# > 10°4, - Pi/4 - 3/4/#,
Argl1/Sqrtl1 - (HankelH1[2, #]/HankelH1[0, #1)~2]] - Pi/2]];
RhoQ = Function[If[# < 1874,
N[2/#/Abs[Sqrtl1 - (HankelH1[2, #]/HankelH1[@, #1)~ 2111, 1/Sqrtl#]11];
= {{0, 8}};
For[# =-8;i=0,4<4, ++i, 8 += .01; (81)
AppendTolrg, {18 %, N[18"%*Rho0Q[10"x]1}1];
RhoQ1 = Interpolationirgl;
Rho0Q1 = Function[If[# < 10"4, RhoQ1[#], Sqrtl#]1];
Rk = Function[If[# < 18~4, 3/2*Sqrt[#]*NIntegrate[RhoQQ1[x], {x, 8, #}], 6 #11;
Rn = Function[Abs[3/2*Sqrt[#]*NIntegrate[RhoQQ1[&]1*Expl[1*(PhiQlx])], {x, 8, #}11];
RnB = Function[ArgINIntegrate[RhoQQ1T[xI*ExplI*(PhiQlx])], {&, 0, #}11];

The absolute error is smaller than 107", Then the electron charge is the rectangular mapping
of the charge q, upon the r-axis as presented in Figure 8:

siny = cosp = sin(z—s] - e=q,siny OL=LSin2Y (82)
4 q 4n

The exact calculation with the help of the function FindRoot using the CODAT A;;5-values
for the basic condition of the electron turns out the value £=-2.0485420678463937 resp.
€=-0.6520711924588928n with Q=0.6567290175491683. Because the observer, to the point
of time T» t,, is located (approx.) directly on the r-axis, the electron charge calculates from
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the real charge of the electron q, multiplied with the sine of the angle-difference between the
phase-angle of the electron in base state and the phase-angle of the observer (-m/4) as
€=0.3028221208819746q).
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Figure 8
Ratio of electron charge and charge of the
MLE in the phase space of the electron

This is nearly constant over a large area. With it, the electron charge traces the charge %O of
the MLE d1rectly Thereby, the very small variation of o by approximately —0,20-10
stated in [8], is no contradiction. Only on extremely relativistic conditions, the ratio between
qo and e varies according to Figure 11.

With the fine-structure-constant itself it are just actually about two different »constants«
which only coincides to the present point of time. Firstly it's about the ratio of the observed to
the actual electron charge, secondly about the angle of intersection between electron and
photon. It can be interpreted even like that the charge of the electron itself is a wave-function
and it's periodic. Because of the spin (rotation) the measured charge is a function of the angle
of incidence o then (Figure 8).

On this occasion, the photon always incidents with the angle —3/4n This corresponds to the
real-part, because only this is able to perform work during an interaction. During the
calculation of action, we must multiply with the value siny, therefore. The same is applied
also to the interaction with neutrinos (inverse b-decay v+p—n+e*). Latter one also today yet
figures one of the some many options to the proof of neutrinos. First of all, only the
extremely small real-part (in this case), becomes effective during the reaction of the proton
with the antineutrino, which leads to the so small effective cross-section. Then, in the
subsequent reaction of course the entire neutrino is absorbed, including the »blind energy«.
On higher velocities (near c), near the particle-horizon or even in strong gravitational-fields
thus the uniform »constant« splits into two different variables. The weak interaction becomes
strong quantitatively seen, since the neutrinos behave like photons then. At the same time
there's going to be a symmetry-breaking.
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But back to the electron: While the basic condition of the metrics is settled at Q=1/2, we
have found a value of Q=0.656729 for the electron, but we expected a value of Q=2/3. Using
Q=2/3, we obtain a value for e, which is about 2.54% beyond the really observed one. How
this deviation can be interpreted?

As is generally known, the fine-structure-constant is used in the interpretation of
interaction-processes between electron and photon, at which point the observer usually is
located far away on the constant wave count vector rk at a point Q» 1. In a large distance, this
coincides with the r-axis. Even the electron as a fermion only moves along the constant wave
count vector. Since the Q-factor is identical to the phase-angle of the Hankel-function, it is
defined along rk, i.e. along the arc. The wave-function of the electron shows a certain
curvature with it. The photon itself, the zero vector rn in contrast, is rectilinear i.e. not curved.
Since it's about a photon, which is observed at a point with Q>» 1 the angle a is extremely
close to m/2.

The real interaction indeed takes place in the basic condition of the electron at Q=2/3 i.e.
the zero vector is being up scaled with all its angles to the phase space of the electron. The
result of the interaction on the other hand is being observed downscaled at Q> 1 then. And an
adaptation occurs obligatorily during the real interaction (stretching) of the curvilinear wave-
function of the electron onto the non curvilinear zero vector. For this reason, it is of interest to
determine the arc length of rx. Even if we weren't able to find any analytical solution for (80),
we can say yet, that the determination of the arc length is not impossible. With the help of
(76) we obtain:

t
r = f«/x2+y2dt - i—o’(‘gQJx'2+y'2dQ (83)
t, 00

Q Q4
T, = rlfgi\/coszlargﬁ +sin21arg6 dQ = J'—Q (84)
0 Q pO 2 2

0 0

This is however only the share of the wave-propagation in turn. Together with the expansion-
share, this is applied to the arc length too, we get:

Q
- 2o}
0

_g J’ dQ def
po 2 Ji(1-A+B)+(2ABY

= RO (85)

Also for the expression (85) there is certainly an analytic solution, this is however still too
complicated, so that we will determine this integral numerlcally too, at least for small values
Q, because to large values, the approximation 2/po~Q"* is apphed and the integral turns
analytically solvable with it:

Q
- —rlQ”z jp dQ ~ %rlQ”z [Q"dQ = rQ’ Q» 1 (86)

This is a known relation, which we have derived with it. It is applied however only to values
Q» 1. For the numerical determination of the integral we apply usefully the following
expression in »Mathematica«:

Rk = Function[If[# < 18"5, 3/2*Sqrt[#]*NIntegrate[RhoQQ1[x], {x, 8, #}], 6 #1]; (87)

Now, we are particularly interested in the ratio between rx and rn. The course is presented in
Figure 9 with and without expansion-share. Namely, the expansion-share cancels out in this
case. To the calculation we use the function rs. For a faster calculation we generate the
interpolation function RS[Q] (see annex).
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And it shows following at this point: If we assume the basic condition (rx) of the electron to
be at Qo0=0.6567290, so the associated constant wave count vector rg is exactly about
1.0151827890 longer. If we however multiply the phase-angle Qo=2wot=0.6567290 with the
latter one, a value of 0.666699995 turns out. Except for a deviation of only 4,99935-10 it
equals 2/3. The reason could be the computational error during the numerical integration.
Having duplicated the precision of the calculation however, we got exactly the same result up
to the last position. It could even be about a systematic error then or about others, not
considered influences during the determination of electron charge in the experiment or about
a misinterpretation. Also possible is, that the value in fact is not exactly at 2/3 but at

0.6567290.
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Ratio of electron charge and charge of the MLE
in the phase space of the electron (larger scale)
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In Figure 10 the exact relations are presented in a larger scale once again. One recognizes the
two basic conditions of the electron e (blue) and e’ (red), at which point more final should be
equal to the stretched constant wave count vector of e. This is not the case by the way, since
the angle € and with it also B varies negligibly with the stretching. We determine the lengths
of g as well as ry for the three values to:

3 0.656729017 dQ
£ (0.636729017) = = 1,/0.656729017 ~0.178514r,  (89)
0 Po
203 'laxcan
rN(g) - %rl\E [ pie“ t edQ‘ ~0.183660r,  (89)
0 0

0.666699995 1 'larctan 0

1, (0.666699995) = %rp/o.666699995 [ p—el2 dQ‘ =0.183687r,  (90)
0 0

It shows, there is no match in length. Even if we deduct the expansion-factor from the result
we always get a deviating result (the best fit would be at a phase-angle of 0.660147). That
means, the basic condition e is only nearby Q=2/3 ie. with 0.656729017. That doesn‘t
conflict with other findings of [1] and plays a subordinated role with it. The exact 2/3 was just
a guess of mine anyway. The only thing, that matters, is the angle e=—2.0485420678463937.
Now, we already want to calculate the corresponding charges:

T 0.656729017 1 jlarctane
q,sin| =——arg j —e’ dQ|=¢ (91)
4 0 0
2/3 .1
. T 1 Jiarctane ,
q,sin| ——arg | —e dQ] = 1.0253956e = ¢ (92)
4 o Po

I would denominate condition e’ as excited state of the electron. With it, we have proven, that
it is possible, to find a relation between the charge e of the electron and the PLANCK-charge
qo- Maybe, these two charge-bearing particles are actually identical, on the one hand as free
particle (electron), on the other hand bound in the metrics...?

3.2.2.2.  Dynamic contemplation

We have determined yet that the electron charge is (could be) equal to the rectangular
mapping of the charge q, of the MLE onto the metrics-axis of r. What happens now, if the
observer moves with a certain velocity or is located in an area of strong curvature or quite
simply, what's the spatial and temporal dependence of the electron charge?

If the observer is moving with a relative-velocity different from zero in reference to the
coordinate-origin, he is, in terms of physics, moving backwards on the expansion-graph in the
direction to the zero point. The same is applied in the proximity of a strong gravitational-field
or that of the particle-horizon. The temporal dependence is inverse. In the natural time-
direction, he moves away from the zero of the expansion-graph. All that depends on the value
Q (frame of reference), on time, distance, speed and/or the gravity potential. In order to
determine the dependence, let’s have a look at the model according to Figure 8. At first, we
will determine the dependence with respect to the phase-angle Q.

J. of Mod Phy & Quant Neuroscience Vol:1.3, Pg: 24



Rsearch Article Open Access

If the observer is located far away on the r-axis, so the phase-angle e—f of the metrics, that’s
the vector from origin to the observer staying on the expansion-graph, amounts to (approx.)

—n/4 (r-axis). The r-axis forms the asymptote of the expansion-graph. If we now approach the
origin, the value of the angle becomes greater (the r-axis turns to the left). Now, the charge
arises to e'=q,siny’ (not identical to €’ and y' of Figure 10). On this occasion the right angle
(o) survives, because with the turnover also the propagation direction of the photons changes.
Then, under application of (85) and (86) in the triangle e'rr'qo, we obtain the following

relations:
T T
y = n—E—B = E—[—s+argjgdt] (93)
lQ 'larc anf
siny = sin E+8—§Q2J’LeJ2 “dQ (94)
2 2 9P
RnB = Function[ArgINIntegrate[RhoQQ1[xI*Expl1*(PhiQlx])], {x, 8, #}11; (95)

Plotl{Sin[(Pi/2 - RnB[10"t7] + €}, {17, -8, 8}]

For a faster calculation I defined the interpolation function RNBP[Q], for sin y the function
QQJQ] (see annex). The course of the corresponding function in dependence on Q is shown in
Figure 11. We see clearly, that the ratio electron charge and PLANCK charge is nearly constant
over a wide reach. With the fine-structure-constant it’s really about a genuine constant, at
least for the these days technically accessible range. But, approaching the origin, e.g. with
very fast speed near c, the ratio changes. The maximum is at Q=0.656795 behind the particle
horizon.

1. 000000000000

@.494481640548

0.302822120885

0.656729017549 —

-8. -6. -4. -2. a. 2. 4. 6. 8.

Figure 11
Ratio of electron charge and of the PLANCK charge
as function of the phase angle Q according to (94)

Btw., Figure 118 in [1] shows the temporal dependence and not that on Q. In the
approximation |c|~Q, 2~t-"# applies. With it, we determined the dependence ¢'(Q). But we
are rather looking for the function e'(v). Most simply it would be, if we could determine Q(Vv).
In section 6.1.2.1. of [6] we already found with (696 [6]) the expression Q=c2/V2. But we
cannot use it here, because it only applies to a non-accelerated frame of reference. The item v
is the speed |¢| with respect to the r;-lattice of subspace in this connection. If we accelerate,
our frame of reference gets lost and we get a new one, in which most of the base values, even
v, have taken on another value. Indeed, expression (696 [6]) applies-on, however with another
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value of v. Thus, we cannot simply add the speed after acceleration to the value |c|, at least
not linearly, but geometrically. Therefore, we have to find another, better expression here.

We are moving on the constant wave count vector rg. If we look at expression rZI c dt more

exactly, so ¢ depends on the time dt. Thus, we have to replace dQ with dt at first. Based on
(86) without expansion applies:

2x,t

3 9 3 9 1
r = [cdt =5r1j—sz5r1jQ2dQ Q = (96)

€

Reference point is the expansion centre {r,r;,ri,t;} in this connection. Now let’s substitute dQ
by dt with the ansatz:

1
L I T LI (97)
2 2g,t
2&0‘[ dQ 21<0t dQ = 98)

Plugged into the integral we obtain then:

1 1 3
J‘Qd'[ ~ ECJ’Qozdt = gi QZ dQ = rle (99)
2 2w,
3 3 ~1/3¢ 2 \1 3
N S 2kt )y [ 2K, 2 g 3
fedt » 1,Q? =1, (?]4 - [W} B [M0K0]4t4 = cifat (100)

We can’t do much with that either, as we’ve only | proven, /‘E‘hat the world radius R/2=ct is,
without consideration of expansion, proportional Q* resp. t*'* in the approximation.

If speed comes into play, we always have to do with more than one reference system and with
measurements of physical quantities we have to perform a LORENTZ-transformation. We have
stated in [6], that wave-lengths are stretched according to A~Q 32 The same applies to the size
of material bodies, whereas the PLANCK-length ry is ~Q only. Otherwise no redshift would be
detectable. With the LORENTZ transformation the wave-length A depends on the inverse
LORENTZ-factor p=(1-v*/c?) """, it applies A'=p ' A. However, this must not be confused with
the formula for the relativistic DOPPLER-shift. With it, we are able to formulate expres-sions

for the dependence Q=f(v):
_ &]S g - [ﬁ]; (101)
Q, Q,

~ vk v
Q = Qo[l__213 - =
c c
Q3/2~ (34 Bflw (z+1) Q-~ (2 B—2/3~ (Z+1)2/3 (102)

Q is the value in the observer’s frame of reference. In order to ensure an exact calculation
even for velocities extremely close to c, it’s a good idea, to increase working precision. In
Mathematica/Alpha it happens with the help of the function SetPrecision with an allocation to
an auxiliary variable inside the definition of the function:

Qu = Function[a4712 = SetPrecision[#2, 389]; #1*(1 - a4712"2)"(1/3)]; (*Q(v/c, all 0~)*);

Quo = Function[a4713 = SetPrecision[#, 309]; 00*(1 - a4713°2)"(1/3)]; (*Q(v/c, Q0)*);

v0 = Function[a4714 = SetPrecision[(#2/#1)"3, 309]; (103)
Sqrt[SetPrecision[1 - a4714, 30911]; (*v/c(Q, all 0~)*);

v00 = Function[a4715 = SetPrecision[(#/00)"3, 309];
Sqrt[SetPrecision[1 - a4715, 309]11; (*v/c(0, 00)*);
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With it, it’s possible, to specify the ratio e/qo as a function of velocity v exactly. Unfor-
tunately, the graphlc resultmg from, is underwhelming, unless we work with the logarithm of
the difference (l—V /c? ). But the function a at first. Because of (94) and (101), both are no
constants in fact, but reference-system-dependent.

0.0795774192660

0.656729017549

0.0169058679903
0.02

0.0072973636359

-8. 6. -4 -2. 0. 2. 4. . 6. —> 8.

Figure 12
SOMMERFELD's fine-structure-constant
o as a function of the phase angle Q

In this context I have to disappoint the astronomers. The fine-structure-constant varies with
time and distance indeed, but the change of a comes into effect only from approx. 10~°m off
the particle horizon (world radius) on.

The same applies even to the course as a function of time t after BB, depicted by means of the
function . So you have to find another explanation for the quasar-problem, unless, these are
located outside our universe. Possibly it’s about the effigies of our neighbour-universes? But
then they should be arranged in the form of a crystal lattice. Take a look and see, if there is
also a quasar in the opposite direction. But now enough of speculation.

Further to the correction factor 8. Because of (74) the function has a shape like o' (right-
hand ordinate). For d the left ordinate applies. The t- and the Q-axis apply to both at once.
The t-values arise from (96). Somebody will have doubts at this point, if we really can
reckon-back so far in time. It has to be said, that with Q nearly all other natural constants vary
too. Shortly after BB photons behave like neutrinos and vice versa. However, the course less
than Q=" in Figure 11-13 is probably theoretical, since the base state of the photon is at '5,
that of the electron at approx. %. Besides from that, the metric wave field is not completely
established until Q=%. It’s even about a model.

Even if the ratio e/qo is quasi constant everywhere, it nonetheless depends on time, speed,
distance and the gravitational potential i.e. the frame of reference Q. The same applies to
PLANCK ‘s quantity of action 7. Because of (23) applies:

_1 CZZ
~Q,’ ho= qézo = - 20 ~Q, (104)
sin’ y

Thus, in the predominant part of the universe, spatial and temporal, a and 6 are constant.
Nevertheless, the previous contemplation is important for the determination of the base state
of the electron mass with Q=1.
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Figure 13
Correction factor & and reciprocal of the fine-structure-constant
a as a function of time after BB and of the phase angle Q

3.1.4. The electron mass

3.1.4.1. Static contemplation

Having stated, that I hadn’t considered the electron mass m. in my work before, I searched
for a relation, with which it can be calculated from the PLANCK-mass my resp. vice versa. In
contrast to the charge, which resides on the surface, with the electron mass even the inner,
invisible part comes into effect. Therefore, a behaviour like in the previous section 1s not to
be expected. By trying, with the Values from [1] and a phase angle Qo=7.95178: 10, based
on expression (1049 [6]) Qu=%(rc/10)’, I found the following expression:

m, ~ LmOQ 7 =9.20759-107'kg = 1.01078m, m, = % (105)

¢ 127>

Interestingly enough, this value is near to the real one amounting to 9.10939-10'kg. Thus,
it seems to be possible, to calculate me. In [1] I already set-up a program, with which most of
the universal natural constants could be calculated from 10 fixed values. The electron mass
was one of the input parameters. The value Qo has been determined using (1049[6]). This
way, it was possible to calculate the specific conductivity of the vacuum i, so that the values
can be determined top down too.

But it was impossible, to calculate all values and there was always a residual error. In actual
fact, there are even only four values, which can be fixedly defined. These are the three
invariants of subspace c, Wy, ko, and k, as well as the ones, depending on them gy and Z,,
furthermore the value 7,, the initial action of the universe shortly after BB (Q=1). The reason
is, that these as the only ones, really do not change at all. Neither, they do not depend on any
system of reference.
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Except for the meter and the second, which are exemplarily defined, CODATA unfortunately
took a different part with the other values, in that they fixedly defined particular values
arbitrarily, e.g. 7, latter one to the recent definition of the kilogram. The whole issue is quite
problematic, especially since 7 depends on the frame of reference. Now I tried to optimize the
lot, in order to improve accuracy. Extremely important is, that the kilogram won’t be
modified at all. Otherwise millions and millions of scales would have to be recalibrated. Also
I act on the assumption, that the CODATA-values are pretty accurate.

Indeed, these have been determined by a kind of iterative process. Lab A determines the
value a with a certain accuracy. Another lab validates a with another accuracy. Based on a lab
B determines value b even with another accuracy. Based on a and b lab C determines...etc.
This way we approach the real values more and more. The more exactly we measure, the
more deviations carry weight, being based on the arbitrary predefinition of e.g. /# and on the
fact, that the lab, value a should be validated by, is in the middle of nowhere, e.g. at a point,
the apparent gravity has a different value. The earth is not a ball anyway, but a geoid. So it
becomes important more and more, to find a method, with which these deviations can be
calculated out.

But further with the electron mass. Just like (890[1]) and (1049[6]) expression (105) offers
an oppor-tunity, to determine the value Qp. We need it to calculate-up to the initial values,
mainly for . It applies:

? 3
Q, = [ 12ﬂ] — 8.2096910% (106)

127" m,

The value differs from the one determined in [1] and depends from my and m.. The further
way leads over the comblnatlon of the charge and mass-path on the initial level, thus
e—qo—q1—7%10;=Myc’—M;c*—myc’—m.c’. Thereafter, we are able to determine i, and G.
An important side condition is (74). The whole issue is similar to Sudoku. If the numbers
finally add up without deviation, the whole construct can be considered as correct, if not, then
not.

With (106) the calculation only adds up using the approximation %2 of (73) for §, then even
exactly. But then a, d, #, G and other values don’t fit reality anymore, so that we have to
discard this variant unfortunately. Thus, we must find an more exact expression for (105). If
possible, only integer fractions, the value m and at most v2 should occur therein. After a long
trial, days later, I actually succeeded, to find such a relation :

m, = 2J_51 ;= 9.10938-107 kg A=+5.32907-10"" (107)

For & we take the current value, for my expression (105). The standard-MachinePrecision is at
approx. 107'®. The deviation is a measure for the detuning of the SI -system as a whole,
especially caused by the imprecision of Gais, specified with £2.2:107. This way, accuracy
can still be improved significantly. Expresswn (107) exact obviously. That also applies to all
other expressions, if we replace 12 by 97°v2 & in them. Now we can determine Qo and my
even exactly with it. It applies:

3
Q = | 26| — 834047113224285-10% (108)
187 m,
m, = 97°y25m,Q," = 2.17643409748237-10 kg (109)

Obviously, Qo (108) has another value, as determined in [1]. That will be surveyed later on.
For my the following relations to other mass quantities turn out:
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M, =#H,/c’ = m,Q,' HuBBLE-mass (110)
2 \/’ 1/3 2
m, =97°v28m.Q,"” = hw,/c’ = M,Q, PLANCK-mass (111)
2 \/_ 4/3
M, =97"v2dm . Q,"" = p,k,i = m,Q, MACH-mass (112)
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Figure 14
Course of the reference-frame-dependent masses
my with respect to the phase angle Q, large scale

The course of (110) until (113) for greater values of Qg is shown in Figure 14. We can see, all
masses except for the electron mass intersect in the point Q=1. M;, the MACH-mass, is the
counter-mass, postulated by MACH, which shall be the reason for the inertial mass of all bodies.
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Course of the reference-frame-dependent masses
my with respect to the phase angle Q, small scale
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According to [1] it’s the sum of the masses of the gravitational field (35) and of the EM-field
(5) of the universe, which are mostly concentrated at the particle horizon. It’s the red-shifted
remnant of the initial mass M.

Figure 15 shows the course near Q=1. Even the exact course of the electron mass mg
according to (107) in comparison with m{ (105) is depicted there.

As we can see, shortly after BB, the so-called HUBBLE-mass My, a measure for the rest-mass
of the photon, is yet greater than the rest- mass of the electron and not to be neglected. Now-
adays the value amounts to 2,6094858-10 kg only. The model makes it possible, to simulate
the conditions shortly after BB with simple means. With the CODATA-value of 7 we are able
to determine ko and %; even now:

3 4
K, = ( 12\/5] 57— = 1.36977766319022:10"Sm’! (114)
18x meuoh

h, = hQ, 8.79562579656546-10*Js (115)
Now we can apply these values as initial values (subspace parameters). Then we turn around
the calculation direction to top-down. The definition of ko as fixed value also has the
advantage, that we don’t have to measure it by no means. Due to its extreme size it’s also
unlikely, that we will be able to carry out such a measurement in the near future. The
definition of 7, as fixed value is definitely better, than that of # and even correct. Because of
the definition of the Kelvin we also take in addition the BOLTZMANN-constant k as a statistic
value and the fixed genuine constants are complete. All other stuff is to be calculated. From
now on, instead of Qy we’ll use me to the identification of the particular frame of reference,
because it can be measured (magic value). With it, our concerted metric system 1is ready, and
it adds-up, exactly! To the calculation of Qp from m, we still rearrange (108) in the following

manner:
-3/7
] (116)

Q, = [97&/5 8

In order to transform measured values being subject to the | LORENTZ transformation, we only
have to multiply the mPut parameter with the factor (Q/Q )**%, depending on, whether the
LORENTZ-factor y or v = finds use. Furthermore it must be pomted out, that not only 7, but
also mg Varles over the years. With 4 the variation is at approx. —1.4036-10 '°a”", with m. at
—2.1054-10'%a™", if only because of the growth of age. That should be taken 1nt0 account by
the SI-panel w1th the definition of the kg, /; in contrast is invariable. A definition by means
of m, also would be possible and even recommendable. But the extremely small value is very
difficult to scale-up.

HoKohl

3.1.42.  Dynamic contemplation

After the determination of the static, i.e. time-dependent value of the electron mass, we
want to deal with the electron in motion. Because of its smallness it can be accelerated by
fields or by collisions with other particles only. Latter one we don’t want to contemplate here.
Since the electron disposes of the charge e, we conveniently use the electromagnetic field for
the acceleration. The whole issue takes place in the vacuum.

3.1.4.2.1. Basics

Although it’s about school content of curriculum, I want to go into detail with the basics of
acceleration of the electron in the electromagnetic field once again, gathered from [10]. The
electrons are released by a heating element at the cathode (0V). By impression of the voltage
+Uy at the anode, acceleration takes place. If the anode has a hole, the electrons move-on
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even behind it with the speed achieved by acceleration. The speed depends on the applied
voltage. Nonrelativistically applies: “4m.v*=Upe. The ray can be focussed by electric or
magnetic fields.

With accelerating voltages >2.7kV indeed, the velocity v of the electrons must be treated
relativistic, v gains a value >0.1c then. The kinetic energy [J]=[V-As] divided by the electron
charge e =1.602176634-10 '’ As the value in eV turns out. The values apply in the observer’s
frame of reference, we cannot »fly with«.

The kinetic energy Wii, of an electron
equals its total energy Wr. W, = m_c’-mc’ (117)
less the rest energy Wy

The kinetic energy according to the
energy-conservation-rule equals the per- U, = m_c’—mc’ (118)
formed acceleration-work of the E-field

~\3
The relativistic mass my and the rest mass m_ =ym, = m, _ m 2 2 (119)
m, are linked by the Lorentz factor y el ¢ 1_v2 ‘1Q
2
. . m c’ 5
Plugging in of the relativistic mass Uye = = -m.c (120)
Into the energy equation - %
C
~\3
U.e 1 5
Out-factoring and division by mec® yields b= = =-1= 2 -1 (121)
m_c \/ |_v2 Q
)
-2
. A% Ube
After rearrangement we obtain for vie [Up) - = \/ 1- [1 + o ] (122)
C e
UrelU=Function[ScientificForm[SetPrecision[Sqrt[1-
setPrecision[1/(1+# qe/me/c~2)"2,180]1,180],180]]; (123)

In (123) and the subsequent functions the precision is set like that, we can calculate even
velocities with e.g. 0,999999"*. For the difference 1— v,e1[Up] the function DVrelU (124) can
be used.

DUrelU=Function[ScientificForm[SetPrecision[1-(Sqrt[1-
setPrecision[1/(1+# qe/me/c~2)~2,18011),180],101J; (124)

With the help of (121) we can calculate the phase angle Qrel[Ub]ﬁ once relative to Qo, the other
time absolutely (italic). Please don’t change the fraction 1/(...)"” into (...)?, otherwise you
will get an error message Division by zero! with particular values.

Q= 0, [l+ She ] (125)

m.c

QrelU=Function[SetPrecision[SetPrecision[1/(1+# ge/me/c"~2)"(2/3),180],16]];
QQrelU=Function[Q@*(Qrelu[#1)]; (126)

Also important is the inverse function of (123) UeV, calculating the necessary acceleration-
voltage for a particular (v/c). It also yields the kinetic energy in [eV] at the same time.

2 1
U, = e [{I_V_;]z_l] (127)
e C
UeU=Function[a4711=SetPrecision[#,1000]; (me ¢~2(1/Sqrt[1-a4711~2]-1))/qel; (128)
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3.1.4.2.2. Energetic contemplation

Shortly after the start of operation of the Large Hadron Collider (LHC) at CERN could be
read in the press, that it ,,simulated the BB* [9]. Thus, we want to verify at this point, if it is
poss1ble at all. The prior condition would be, to reach the nonlinear range at a phase angle of

Qo<10 That would be in the temporal close- -up range of the phase jump near Qy=1 approx.
10~ after BB (Figure 13).

Just let’s try, to accelerate an electron onto such a velocity. What energy we would need for
it? To the calculation we use the functions vQO (103) and UeV (128). It’s a good idea, to
suppress the intermediate result of vQO, otherwise you will get a multiline output with 173
nines after the decimal point in the form of 9. 99 .9913822:10"". So we enter the following:
UeV[vQO[ 10’\3] obtaining a value of 3.8923-10°%¢V. But the LHC has approx. 13TeV only,
that‘s 1.3-10"°¢V. Even if the LHC works with protons, energy is energy, thus we are orders
of magnitude below that.

g Name m,=W,e/c? W,=m.c?/e Qo

—

S [kq] [eV] [1]

M, Initial-mass univ 1.514002834704-1011 1.23085-10% 1.00000-10°

B, Linearity border 6.938648236086-10%° 3.89230:10* 1.00000-10°

M, Mach-mass 1.815248576128:10°3 1.01828-10% 2.44470-10°

U, Mach-voltage 1.550667802897-10°* 8.69861-10% 1.26039-10°

Mo Planck-mass 2.176434097482-10°8 1.22089-10% 1.00543-10%

Uy Planck-voltage 1.859208884401-10° 1.04294-10% 5.18360:10%

Me Electron-mass 9.109383701528-10 3 5.10998-1@° 5.25417-10%

My Hubble-mass 2.609485798792-10 *° 1.4638-10 33 8.34047-10% |—Q,
Table 1

Energy and masses in the Universe

The interesting question is, whether it is even possible, to reach such a high speed, especially
for the financiers. For this purpose, I compiled the masses and their energy myc”/e in eV in
comparison with the corresponding phase angle Qo, determined in (110) until (113) in table 1.
As we can see, the necessary 3.8923-10 eV is above the MACH-mass. So there is no longer
enough energy in the universe, in order to accelerate one single electron into the nonlinear
range Qp<10’. As already spec1ﬁed M, equals the sum of the gravitational and of the
electromagnetic field of the universe.

As stated in [6] the density is at % G;;(R/2) =1.94676:10 % kg-dm>. But how about the
masses, galaxies, stars, planetsi dust etc.? So the mass-density is about two orders of
magmtude below at 1.845-10°" kg-dm 3. That’s much less. Furthermore, the required
acceleration-voltage is greater than Uy (PLANCK) and U; (MACH). According to [11] these are
defined in the following manner:

4
C

U, = |——
47[80G(0)

U, =

C4

4ne,G,

U, =

C4

4ne,G,

(129)

Because of the existence of myp, M; and M, there are also three different values for the gra-
vitational constant:
G = C2I'o/mo G, = Czrl/Ml = GQEZ G, = CZI]/Mz =

GQ;  (130)

U, and G; are legacy values at this point, impossible nowadays. Thus, more than U; won’t
work. Presuming U, as the highest possible voltage, if technically feasible at all, with the
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maximum available energy M;c’, almost 12 electrons can be accelerated to a top speed below
the linearity border. Maybe it even suffices for one proton. So much for ,,simulating BB*.

In Figure 16-18 the theoretical courses of the phase angle Q,, of the electron charge e and
of a as a function of the kinetic energy as well as of the acceleration-voltage are shown once
again. Additionally, the energetic boundaries from table 1 are marked. As we can see, we
can’t even get close to the BB.

fo,m

IgW, [eV]

R

L L L L L
90 95 100 185 110

Figure 16
Phase angle Qg as a function
of the energy of the electron

1.000000000000

q(l

0.494481640548

0.302822120885

Yy, M, B, M, lgWe ICVI

Figure 17
Ratio of the electron- to the PLANCK-charge
as a function of the energy of the electron
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0.0795774192660

U, M, B, M, 0.0169058679903
lgW, [eV]
0.0072973636359 —_—
90 95 100 185 118

Figure 18
Correction factor a as a function
of the energy of the electron

Finally, on the subject of particle accelerator. I had promised, to address this point again
with respect to the additional share of the mass- and charge-increase. The question is, do the
additional shares cancel each other even in a particle accelerator? Just let’s recall the various

dependencies:
3 3
mc’ ~ Q,> ho ~ Q,2 (131)
3 2 1 !
0 ~ Q02 h = qQoPo ~ Qo2 - 9o ~ Qo2 Dy ~ Q02 (132)

For the technically accessible domain suffice the approximation formulae. It is currently
generally assumed, that both, the electron charge and PLANCKSs quantity of action are genuine
constants. The same applies even to the magnetic induction B=d¢p/dA, with which the
electron is kept on track in the accelerator.

Here we have to do with two types of forces. On the one hand, the electron is subject to the
centrifugal force F,=m,v/r, on the other hand it generates a LORENTZ-force F,=e(vxB).
Both are directed against each other. It applies v_Lr, thus F,=evB. With it, we obtain the
classical expression for the cyclotron (B=const) and even for the synchrotron (B#const):

_ % ~ By with p=y'=1-3 (133)

Now, according to this model as well m,, e as the induction B are subject to an additional
redshift. Shouldn’t this be found out somehow in accelerator-experiments? Altogether applies
to the electron mass m,~Q,52~f353, to the electron charge e~Q, 2~fB!2. If we assume, that
the track-radius r and with it, also the elements of area dA of the magnetic field B are not
subject to a length contraction for the observer, applies to the induction B~@~Q, 2~ 13.
Thus, plugged into (133) we just obtain

Bo(my)

= B1/3é BI/SB pv (134)
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The same result as with the classical model, where we assumed e and B to be constant. Thus,
the additional mass-increase really cancels out.

3.1.4.2.3. Perspective

Before we engage in further characteristics of the electron, I want to answer the following
question: Since it already needs an extreme amount of energy in order to accelerate one single
electron to a speed within spitting distance to c, is it even possible, to get a macroscopic body
up to a similar speed? It’s basically a question of whether we’ll ever be able to travel to other
stars with a space-craft.

The answer is »Yes«. In addition to the acceleration of a particle/body in a field, the so-
called external acceleration there is namely a second kind of acceleration, the internal or self-
acceleration. That is, if the body disposes of its own drive. Then very different relations

apply.

In principle, a body with the rest mass my contains exactly as much energy (moc?), in order to
completely accelerate it to light speed. Let’s take a space-craft with photon-drive as an
example. The energy shall be generated by matter-antimatter-annihilation and propulsion
(mirror) shall work with 100% efficiency. Since it’s about a rocket, in principle the
ZIOLKOWSKI-equation applies. But there is a difference because of the constancy of light
speed, so that we can work with the same ansatz indeed, but finally a different relation turns
out. According to [12] the ZIOLKOWSKI-equation for vp=0 reads as follows:

(135)

bt Vg = C Specific momentum drive b =m Fuel consumption
V= -V, In|1-—

m, F = Vg'b = P/C Thust M = M+ M Restmass
my, is the empty weight, mr tank filling. As we can see, F only depends on the power P,
unlike as with a normal rocket. Thus, (135) doesn’t apply. Therefore, we start with the ansatz
in [12] . I cite:

,»We split the whole continuously proceeding acceleration process into such small steps, so
that step by step, a particular value of the current speed of rocket can be assigned to v and
also its mass to the value m. In the current barycentric system of the rocket the mass Am is
thrusted out with the speed vy, it has the momentum vg Am therefore. Because of the conserv-
ation of momentum the rocket gets a repulsion momentum of the same size m Av, increasing
speed in the opposite direction about Av. After the following limiting process up to even
more, even smaller steps it no longer plays a role, that we should schedule m —Am instead of
the mass m to be correct. Hereby, the changings Am and Av become the differentials dm as
well as dv. Thus, it yields (using the minus sign because v grows while m drops)”.

v,dm = —mdv dm = 2 dt dv = - dm (136)
c m,
P 1
dv = &mocx dt v = mocjpdt (137)

The whole issue is simply considered, without sophistries like acceleration, distance, travel
duration, payload, relativistic effects etc. If you are interested, please read [13]. Only the
conclusion from (137) is of interest. In principle it’s possible, to achieve light speed with a
space-craft. You just have to »burn« the complete ship, cargo, the passengers, the crew, the
drive and all the rest for that purpose. Then you really move with c, but only in the form of a
light ray. You can also push the self-destruction-button instead. A reasonable navigation is
possible. As a problem remains the fuel. Antimatter with a negative mass would be very
advantageous in this connection.
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3.1.5. The classical electron radius

Meanwhile we know, that it doesn’t actually exist, since the electron is described by a
wave function. But the electron disposes of particle-properties too. Furthermore, the value
still occurs in particular expressions, amongst others in 6, which are still useful nowadays.
Moreover, we defined the line element (MLE) as a ball capacitor, moving in its own magnetic
field. Also we had assigned a radius r,/(4m) to this, which shows similarities with the practice
for the definition of the classical electron radius.

In doing so, it was assumed, that even the electron resembles a ball capacitor with a
specific capacity depending on the electron-radius. Because the charge was known, only one
particular radius comes into consideration, with which energy, charge and capacity fit each
other. It is defined as follows:

2
R o= — (138)
4me,m,c’

Since it’s about a length, the relations to the PLANCK-units, mainly to ro, are really important.
Now, we have already used this value in (890 [1]) to the determination of Qop, but we got a
different result. Aside from that, the value determined with (116) seems to be more exact, as
a comparison with the CMBR-temperature, measured by the COBE-satellite, suggests. See
section 3.2. for more details. Thus, it’s appropriate, to impose expression (890 [1]) with a
correction factor {, in order to obtain the result of (116). If there is already a curvature with
the surface-calculation, we can assume, that even the radius is bent. Maybe, we even obtain
the desired relation re/ry then. Equating (116) with (890 [1]) with a subsequent substitution by
(138), with the help of (82) and (104) we obtain:

-3/7 3 3
Q, = [9752«/56L] - —[Q—r] (139)
HoK o7 2\ 1,
2 r m -1/7
¢ - \ﬁ _o[gnzﬁs : ] (140)
3r HoKoTt,

- 1 1 1 1 m,
Or 3 3208 36m’ 3‘/3\/5 m,

The ratio p=mp/m, is known to be constant. If the curvature were based on the same curve as
in Figure 10, { would match the value Qy=0.748612~%. Now we can also specify the
relations to the other PLANCK-lengths:

= 1.016119033114739 = const  (141)

r = KOIZO (142)
ro= 3ngQ = 3ngioy (143)
I R (144)
R = {/gre(;Qg“ = 1,Qy = 2cT (145)

re is greater than ro. The result is exact. Now, even the right-hand expression of (139) yields
the correct value. Still remain (840 [6]) und (841 [6]), including { once again:

3 (e s s ce’m )
K= 20— 2""  — (144n*2)° ——— _ = 1.36977766319-10”Sm™" (841 [6
* 816n°slG H’m’ ( ) (e,Ghm})’ (841 6]
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3 3 4 3 6
SameGhm, g yane oy S8 Me | 5 53005034581310 (840 [6])

3 2.6 - 6.3
TN e’'m;

In this context, the last expression should be presented once again in kms 'Mpc ' with ¢
(=1.016119033114739) and without  (=1).

H =2
3

0

3. 3 18 71 1
H, - ®, _ 264n%e,Ghm, _ |2.447866-10° ] =71.9963kms 'Mpc ™ (1051 [6])
Q 3 e 2.223925-10"%s™'=68.6241kms 'Mpc ' with

Obviously € not only seems to be a correction factor of Qo, based on the curvature of the elec-
tron radius (139), but also to the conversion of the two different Hy values, which arise from
astronomical observations and from CMBR considerations. This even applies to other models,
e.g. iSpace [25]. Calculations [26] with astronomical data, taking into account the Values TTf
TE, EE+lowE+lensing+BAOQO, result in a value of (72. 0+0. 1) and about 67.8 kms 'Mpc
w1th CMBR data.

Now let’s have a look, if and which reference-frame-dependent variations cancel each
other. At first the classical expression. I used the relativistic stretch factor § for the mass:

2
L S (146)
4re,fm.c

With it, the classical electron radius according to the classical understanding (interesting
pairing) follows the relativistic length-contraction, which is not a contradiction. Now we
apply the real values for mass and charge of the electron obtaining the expression for the
»modern« classical electron radius:

232
. _ e _ B—l 032 (147)
4z, 7 m, °
0

The additional mass- and charge-increase cancel each other even here. Also according to a
»modern« view the radius is subject to the single relativistic length-contraction. With it, there
is an essential difference to the capacitor of the MLE, whose radius is proportional Q, only.

The fact, that most of the changes cancel each other, suggests the physical laws to be the
same in all reference-frames. But that’s only partially correct. Just the references to the
subspace-values are changing. Fortunately, these of all are the ones, which finally cancel out.
Only the LORENTZ-share remains. That means, we have to do it with a Virtual Relativity
Principle. The laws of physics only appear to be the same always and everywhere. The
version advocated by EINSTEIN [14] applies nevertheless:

,,Die Gesetze, nach denen sich die Zustinde der physikalischen Systeme dndern, sind
unabhdngig davon, auf welches von zwei relativ zueinander in gleichformiger
Translationsbewegung befindlichen Koordinatensystemen diese Zustandsdnderungen
bezogen werden.

The subspace itself is known, not to be a reference-frame. There is no preferred frame of
reference. But there is something like a superordinate system for the cosmos as a whole. No
problem, the SRT would correctly do the job even then. Besides it’s not certain, that our
value Qo represents the maximum. Possibly there are even others with a higher Q,.

The question, ,,Where is the maximum?“, is hard to be answered, maybe in that we calculate
out the relative speed with respect to the microwave background. According to [15] the value
amounts to 368+2 km/s. With the help of (101) it should be possible to calculate Qmax. We
rearrange:

2 |[-1/3
Q = QI-Y| = 8340471132-10°(1—(3.68-10°ms™'c™")?)* = 8.340475321-10° (148)
max 0 2
C
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As we can see, the difference is not that big. The deviation amounts to +5.02:10", which
makes a difference in the age of +14310 years only.

3.1.6. BOHR ‘s hydrogen-radius

Once again a length, which really doesn’t exist, which may serve as a rule, if the propor-
tions inside the atom change or not. According to [16] it is defined as follows:

2
a, = 4"8073 = 5.291772105440824-10"'m A=-6.798-107" (149)
m.e

A indicates the deviation to the measuring value and is tightly above the measuring inac-
curacy. With the help of (82), (107) and (111) we acquire the relations to the PLANCK-

lengths:
a, = 9n\20'6r,Q = 5762 Ee r,Q; cosec’y (150)
p
a, = 9r\20'61,Q" = 57672 Ee 1, Q) cosec’y (151)
p

As well a (proton), as even 0 (electron) are applied in this connection. It should also be noted,
that me behaves differently shortly after BB, and that according to (107). But according to
previous understanding, hydrogen atoms do not exist at all at this time. Since even the angle y
is involved, it however could not be true. Now let’s see again, if and which reference-frame-
dependent changes cancel out:

2
a, = Ame g (152)

pr.e’

BOHR‘s hydrogen-radius is also subject to the single relativistic length-contraction, i.e. the
atomic scales are observed shortened by !, just like a macroscopic body. But what about the
additional shares?

e BR

a = Bs/3ﬁleB2/362

The additional shares cancel each other even here. That means, as well the dimensions of
particles, as even the »track-radii«, i.e. the dimensions of orbitals, are subject to the single
relativistic length-contraction only. Otherwise the atoms would have been different chemical
properties at an early point of time of the evolution of the universe.

- p-Q (153)

3.1.7. The COMPTON-wave-length of the electron/proton/neutron...

The COMPTON-wavelength is a characteristic size for a particle with mass. It specifies the
increase of wavelength of a photon rectangularly scattered on it [17]. As a representative we
only consider the electron and the so-called reduced COMPTON-wavelength Ac(%). According
to [17] is Ac=Ac,¢ defined as follows:

n

e 3.8615926772447883-10 "m A=-6.13-107" (154)

By application of (107) and (111) we acquire the relation to the PLANCK-lengths again:

Ao = 9n\261,Q = 9n*\26r QY (155)
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Altogether quite simple expressions, reflecting the »mechanism« behind in principle. Also
they are related to the invariables of subspace and with it, even better than the relations, in
which other natural »constants« are related to each other, without knowing, if and how they
are changing. But to the determination, how the additional relativistic shares cancel out, we

make use of (154):
A = Br?lc ~ B (156)

2/3¢
Ac = BEB L S B - Q;° (157)

The shares cancel each other even here. But the exact expression should read different in fact,
since it’s about a (space-like) wave-function. This is considered by (155).

3.1.8. The RYDBERG-constant

The RYDBERG-constant R, natural constant named after Johannes RYDBERG. It occurs in
the RYDBERG-formula, an approximation to the calculation of atomic spectra. Its value is the
ionisation energy of the hydrogen atom, expressed as wave-count neglecting relativistic
effects and the co-movement of the nucleus, thus with infinite nuclear mass, that’s why the
index oo (citation [18]). Under application of the reduced value Ac(#)=Acc=/4c and of 7
instead of 4, determined in the previous section, we have to rewrite the definition in [18] in
the following manner:

1 a? m.e* a 71 -12
- LY M = 1.0973731568160-10'm"  A=+1.9.10" (158
“= An k. 64w’ 4na, m (158)

Shown is the measuring value at this point. The first expression is best suited, to establish the
references to the PLANCK-units with the help of (155):

\/_a 57t —1 84/3 \/_mp 4/3smy (159)

* 72 3 18432 7

\/_Ot 6— 61 51/3

V2 b My b1 'Q; " sin’y (160)

” 72 3 18432 7

Obviously, the RYDBERG-constant is no constant at all. Since it’s about the natural constant
most exactly measured of all, it’s also best suited to determine the detuning of the SI system
The deviation of (159) to the measured value (158) namely amounts to 7.44431-10'°. That’s
much more than the measuring 1naccuracy in the size of 1.9:10'% The calculated value
amounts to 1.097373157632939-10'm

This example shows, that the SI-system in its present configuration is reaching its limits. A
further increase of exactness is impossible without considering the reference frame and the
relations of the natural constants among themselves. This way, even the outllers can be
identified much better. Using the value m¢/mp=5.44617021487(33) 107 specified in
CODATA,¢5 instead of the genuine quotient and re-determining Qo, Ko and 7, thereafter, the
accuracy decreases by up to 3 orders of magnitude. That’s also a weak point. The ratio me/mp
is something like a second magic value or an important side-condition. Since it’s considered
to be constant, one could theoretically define it as a fixed value. But I think, that‘s not a good
idea. With a reconfiguration even R, instead of m. would be suitable as a magic value.
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Often used is also the RYDBERG-frequency R=cR.,=3.2898419603-10"°Hz. To the compa-
rison with @y and o, we st111 calculate the related angular frequency wr=2mcR., with the
amount 2.0670686668-10's". Tt applies:

o = 5 = 3¢ ©)
w, = 187V20%60,Q"° = 46087°\2 E}e 0, Q) sin’y = ©,Q,'= % (161)
p 0
1 .
0 = 3e V2008 0,Q;" = 9216 6\/_—031 “Asiny = 27cR, (162)
H, = 187°V20760,Q;2" = 46087°v2 2 0, Q; sin’y = 0,Q;" = % (163)
p

By character, the HUBBLE-parameter Hy is an angular frequency too, see also section 3.3.2.3.
Because of the definition in (158) it’s easy to verify the behaviour of the reference-frame-
dependent sizes. As well classically, as even recently, everything cancels out again:

_Lal g g =2ncR, ~ B ~ Q.7 (164)
0 47[: ic 0

3.1.9. BOHR ‘s magneton/nuclear magneton

According to [20] in quantum mechanical view the track angular momentum L’ of a charged
point particle with the mass my and the charge q generates the magnetic moment i (165)

—

- L q
Ho=p (165) Hy 2mxh (166)

Then, expression (166) is the magneton i of the particle of kind x. BOHR s magneton g is
the magnetic dipole moment of the electron, the nuclear magneton py the magnetic dipole
moment of the proton. Both only differ in the mass (me resp. myp) in the denominator. We only
regard the electron at this point. According to [20] pg is defined as follows:

eh
MB: 2

= —9.274010078328 - 10JT"" A=+3.107" (167)

(S

It should be noted, that the magnetic moment I of the electron is always directed opposite to
its track angular momentum due to the negative charge, hence the negative sign [20]. Now
let’s look for the relations to the PLANCK-units. With the help of (107) and of (21[1])
my= uoqoro we substitute e and m. by qo and my. We get:

W, = =22 |2 OSINY s g 9940100726513-10 T T A=-6.12-10"  (168)
2 Zy Bk

Here, the deviation of the measured to the calculated value is twice as big, as the given
measuring accuracy. Obviously, inaccuracies of other measurands have been passed through
here. Also 1t s strange, that all values specified in this section are having the same inaccuracy
of £3-10'°. The expressions relating the PLANCK-units all are rechecked and yield the same
result as the original definition, in that case (167). Latter one a deviation to the measuring
value same as (168) turns out. There, probably something else is jinxed.

A comparison with other PLANCK-units of the same kind is impossible in this case. Still,
the behaviour of the reference-frame-dependent values remains. Starting with (167) according
to the classical view, applies:
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Hp = ZE—Z ~ B (169)

Inserting the additional shares we obtain:

1/3"’ 2/3h ~
= S~ B - 0, (170)

In this case we get a different result. But since the magnetic moment always appears in
connection with a charge or a magnetic flux, which both are proportional ', there is a
cancellation of the additional shares too. All in all we can say, the spatial share of total
redshift does not take any effect to the physical laws at the observer, neither qualitative nor
quantitative. It only has a cosmologic meaning and plays an important role with the creation
of a gravitational theory.

With it, we analyzed most of the values associated with the electron. Of course, there is a lot
of further possible candidates. I want to leave them over for the reader. I pointed the way to
add new values. Doing so always must be substituted in such a manner, that the relation
depend on Qg and/or invariants only. As next I want to have a look at some other values,
which surprisingly also can be calculated with the concerted system.

3.2, The CMBR-temperature

Some readers will probably be surprised, to find this value of all at this point. Now, I’d
succeeded in [1], to calculate parameters like Hy and even the (CMBR-)temperature of the
Cosmologic Microwave Background Radiation. It could be engrossed in [19] even more.
Indeed, it is hard to believe, that we can actually calculate back until a point of time before
the phase jump at Q=1. But the previous contemplations turned out, that both, photons —
these behaved like neutrinos in the beginning — and electrons and protons, had had different
properties shortly after BB, banish the usual notions of this period to the realm of
imagination.

Albeit with a different value for Hy (71.9845kms 'Mpc ), I succeeded in [1], to calculate a
CMBR-temperature of 2.79146K with the model. This was close to the 2.72548K, deter-
mined with the COBE-satellite. What works in one direction, naturally also works in the other
direction. So the 2. 72548K of COBE using the values from [1] match an Hy in the amount of
68.6072 kms 'Mpc . Indeed, that’s less than I calculated Now, based on the electron, I
determined, a new Ho with an amount of 68.6241kms~ Mpc ! in this work. And I was not a
little surprised, that it was extremely close to the COBE-value. So I assume, that the new
value must be more accurate, than the one calculated in [1]. Thus, it’s a matter of verification.

Before starting the calculation of the CMBR-temperature related on the new Hy, I would like
to review the basics first.

3.2.1. Basics

The model is based on the fact, that electromagnetic waves don’t propagate independently,
but as interferences (overlaid) of the metric wave field. The wave length of the metric wave
field is equal to the PLANCK-length and proportional Q In return, the wave length of overlaid
waves is proportional Q . To the frequencies ®o~Q "and o~ Q applles That means, both
functions intersect somewhere in the past, both frequencies must have had the same value.
The intersection point is at Q=Y2, as we can see well at the lower frequent branch of
PLANCK’s radiation function. It namely is identical to the frequency response of an oscillating
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circuit with a Q-factor of Q=%. In the model Q is not only identical to the phase angle 2wmot,
but it also equals the Q-factor of the models oscillating circuit. Also see [19] for details.

We just determined the frequency wo extremely accurate. Thus, we also know s very
precise and reversely, we are able to calculate the frequency of the peak value of CMBR and
with it, its temperature. Even the bandwidth of the LAPLACE-transform of the first maximum
suggests a Q-factor of 0.5. This would correspond to the conditions at the point of time t,/4
with Qo 5=, ®y=wo s as well as r,/2, just our coupling-length. The frequency to this point of
time amounts to (new value):

O = = 250 = 0L g = 30940810 (171)
1 €9 Qus

That doesn't correspond to the value, which results from the impulse-length of the first
maximum, but it is in the magnitude order. Now the conditions at this time are shaped by a
very large uncertainty and a part of the emitted frequencies are, because of the large
bandwidth, anyway above, others below (171), so that it is well possible that the in-coupling
of the cosmologic background-radiation takes place right at this point of time with exactly
this centre frequency.

The following contemplations for the in-coupling especially apply to the CMBR. Maybe it
seems to be a little bit complicated, but it’s just a model, which should reflect reality as well
as possible, not the other way around. Now — up to the moment t,/4 of input coupling, the
already emitted energy exists as a free wave. The conditions at this point of time are
analyzed in detail in section 4.6.5.2. [6] »The aperiodic borderline case«. Now there's going
to be the construction of the metric lattice and the signal is coupled in. With the input
coupling, a compression of the wavelength occurs i.e. an increase in frequency about the
factor V2 due to a rotation of the coordinate system about 45°, which we have done in section
4.3.4.3.3. [6] (the metric wave moves in r-direction, the overlaid signals in x-direction).

Furthermore, the metric wave, as well as the energy to be coupled in, exist side by side up
to the moment t,/4, both with wo~wy~t""2~Q,". But with the in coupling wy—wg the temporal
dependence changes into wg~t>"*~Q, >2. This results in a transformation corresponding to a
multiplication by a factor %3, comparable with the transition from one medium to another with
different refraction indices.

But there is yet another, additional effect: In section 4.6.1. [6] we found, that a cube with
the edge length r, contains four MLEs altogether. Hence, the energy must be divided among
these four MLE's. With it, the in-coupling frequency decreases additionally with the effect,
that o is smaller than ®;/2 now. The first two effects are depicted in Figure 20. The split we
have to take into account elsewhere.

Altogether, to the frequency at the moment of in-coupling the following factor is applied
0s = ¥%V20u = 2 %%V2 0, =v2/3 0, = 0.4714m,=7.29281-10%s!, With respect to the
energy hywy=4h o, only a share of 94.28% incorporated, since 7 is neither rotated, divided,
nor transformed, it is a property of the metric wave field itself. The split has no effect onto the
energy balance. The 94.28% relate to a coefficient of absorption of &,=0.9428 = %v/2.
Therefore we are dealing with a gray body [21]. The black body is only a model, which
doesn’t exist in nature. The reflected share yields a further decrease of ws and with it even of
ok. So we also have to multiply with &,. Interestingly enough the value &,=0.9428 = %2 is
close to 6 =0.93786. That should be checked alternatively. However, this is a dead end.

Now to the transfer itself. According to (281 [6]) is the frequency of time-like vectors
proportional to m~t . That equals ®~Q ™" for the Q-factor. We do the following ansatz:
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The factor 2v2 has nearly the same size as the factor ¥=2.8214" from WIEN’s displacement
law. In section 4.6.4.2.5. we will notice that using ¥ instead of 2+/2, actually intended as an
approximation, leads to the only result (136) that is within the error margins of the COBE
measurement. Then (174) should read as follows:

L = M=k _ O 1

A O,

©u _9 3= 4511145 (414 [6])

©, X

X
g =2
Y3
This would correspond to a slightly different refractive index and the factor X in (414 [6])
does not seem implausible either, as it is closely linked to the radiation laws. Apart from that
we can see, that it’s better to relate to ®, or wy. The components z;, are describing the
frequency related the sz however the energy related redshift. For o, (414 [6]) we obtain a
Value of 1.00673-10"*s". Curve 1 in Figure 20b corresponds to the signal w, redshifted by
#Qy? with the frequency response of a 1st order filter with the Q-factor Q=". Except for the
decline in the upper-frequent range it is identical with w, (Curve 6). The conditions before,
during and after in-coupling are shown in Figure 20a.

3
z+1= %Q;

d s | {20
w?!
x
3
-8
Brechung
Refraction
Wy Ay ()08 @y ¢ — -
A1) Ay 5 (@)-COS Py, -COSB,5 =
e A @) Ag s () COSP, -COSP, 5 - COS D,
A (@) A, (@)-cos 0, cm, -cosg,,
Hadnﬂnn Equation -
wy Figure 20b
Intensity of the cosmologic microwave
background radiation with estimate
ay
] (77 W T F I
Approximation equation Planck’s radiation
with group delay equation
cact
x
Wy 3
Correlation 0.999835 dS,[dB] ]
t4 |t T
Figure 20a Figure 20c
In-coupling process PLANCK’s radiation-rule and approximation with
and expansion group delay correction exact function ¢ (relative level)
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According to (414 [6]), the CMBR redshift has a value of z=6.79605-10"", which is orders
of magnitude higher than z=1100, as »generally« assumed. On the one hand, this is due to
the fact that this model works with variable natural »constants«. Due to the expansion, i.e. the
increasel(/)zf ro~Qo (the viewer grows with it) the impression is 3ven, that z is only proportio-
nal to Q, . This would correspond to a value of z=8.14828-10"" and is still well above 1100.
On the other hand, one assumes today that the physical laws shortly after Big Bang did not
differ significantly from those of today. So the origin of the CMBR is said to be around
3000K, the recombination temperature of hydrogen, at a point in time 379000 years after Big
Bang. However, the exact results of the calculation of the CMBR temperature in relation to the
time t;/4 suggest that we must slowly get used to the idea that it must have been different at
that time.

Let us now assume that the decline at the higher frequencies is really caused by the exi-
stence of a cut-off frequency. In any case, such a specific course cannot be achieved with a
normal LC-low-pass filter of any order. Then the intensity of the cosmological background
radiation should have to follow exactly PLANCK’s radiation formula. We therefore want to see
whether PLANCK’s curve 6 in Figure 20b can be approximated from the original curve 1,
initially only as an estimate.

We have already realized that a single MLE owns a cut-off frequency (147 [6]), which
changes during expansion. During propagation, only the active-part A(w)-cosp, with
¢,=B(w) is been transferred (real part). Thus we exactly get the value wg=2w,, it applies
Q=w/(2m,). With more exact contemplation we can see, the cut-off frequency may become
effective in the first moments of propagation only.

Let’s have a look at the moment of in-coupling now: The signal ws (curve 1) is multiplied
with the frequency response A(w)-cose, after in-coupling. As a result, we obtain curve 2,
which already comes very close to the PLANCK-curve. Now the signal is transferred to
another MLE, at which point the frequency has decreased to a value of w,/v2 within this
period. We now re-apply the frequency response to the signal obtaining curve 3 (We
considered the frequency to be constant at the presentation scaling up the upper cut-off-
frequency accordingly instead). Curve 3 comes even closer to the targeted result. We repeat
the entire process twice again obtaining graph 4 (w,/1) and finally graph 5 (w,/2), which
figures a very good approximation of PLANCK’s graph.

It could be so just thoroughly that PLANCK’s radiation-law is really the result of the existence
of an upper cut-off frequency of the vacuum. In this connection is to be paid attention to the
fact, that that, being applied to time-like vectors emitted directly after Big Bang, must apply
to time-like vectors, emitted at a later point of time (e.g. today) too With time-like vectors, it
is impossible to determine exactly, when and where they have been emitted, they are
timeless. Since no vector can be marked with respect to a second one, each thermal emission
must run according to the same legalities (PLANCK’s radiation-law) then.

After we have been able to confirm our assumption with the estimate, it is appropriate to

carry out an exact calculation. I managed to do this in [19]. The exact course of the result
without WIEN shift is shown in Figure 20c.

3.2.2. Calculation

While the temperature of the metric wave field is equal to zero, it’s not the case with the
CMBR. Since it’s about almost black radiation (g,=0.9428 = %:+/2), we are able to calculate
the black temperature indeed, but we want to work-on with the grey temperature. By
transposing the WIEN displacement rule with the energetic redshift z,,=12¢,Q,*2 of (174) we
obtain for oy=2m;:
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ho, s ho, s 2.821439372  Exactl
7= Mo _ 8O3 055603010 8 x—{ e (175)
xk X 6k 242 Approximation
_ ho, 1o, 5 "o, s i
T, = x ~ 3 6k Q) = ﬁQOZ £,= 3 = 0.94048  Exactly (176)

That’s the temperature of the cosmologic background radiation in consideration of the
frequency response (see Figure 21) Expression (176) can be used as an approximation since
the value £=3+1x(-3¢") is only 0.25% below 2v2. The item Ix corresponds to LAMBERTS
W-function (ProductLog[#]). It applies 1x (xe*)=x.

h s

T, = 1.002476662335245 11;(1 Q,> 6= 242 (177)
ho, s

T, = 0.997209201884998 —1Q, £= O (178)

ho, _s
T, = 1.000016126070630 118k1 Q,2 &= 1.002814779667422 (179)

The constructed case (179) turns out the exact value 2.72548K +0.00057K (+2.09137-107%).
With the value Qo=8.34047113224285-10%° (108) of Section 3.1.4.1. the »approximate«
expression (176) even gives a correct result. That would be 4x the 3 in one expression and the
subspace slightly greyer, as thought. Since we want to know exactly, we will verify even this

approach.
7= g o, Q.2 = 2.725436049K A=-1.6125810" (180)
718k T 18k T '

This value is the only one within the accuracy limits of the 2.72548K +0.00057K, measured
by the COBE-satellite.

T
K
6_
5;
4_
Zk
1+%
=
I_ —
-0.5 0.5 1.0 1.5 2.0

Figure 21
Temporal dependence of the radiation-
temperature of the CMBR (linearly)

Table 2 shows all possible solutions in the overview.
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9

‘2 2 § 06

Value Qo Ho Ho o a 20 =]

@ 2 28 8

o8 35 23

[1] [s7] [kms™'Mpc™] K] K] [%]
(890) [1] |7.9518-10% | 2.3328.1018 | 71.9843 | 2.791460 | +0.06598 | +2.42086
€Y40) 8.3405-10%° | 2.2239.10°18 | 68.6241 | 2.732186 | +0.00671 | +0.24605
(COBE), [8.3397.10% | 2.2243.10'8 | 68.6365 | 2.726050 | +0.00057 | +0.02091
(COBE), |8.3404-10% | 2.2239-108 | 68.6250 | 2.725480 | +0.00000 | +0.00000
(179) 8.3405-10%° | 2.2239-1018 | 68.6241 | 2.725480 | +0.00000 | +0.00000
(176) 8.3405-10%° | 2.2239.10°18 | 68.6241 | 2.725436 | -4.4x10° | -0.00161
(COBE)_ |8.3411-10% | 2.2236-10'8 | 68.6135 | 2.724910 | -0.00057 | —0.02091
(178) 8.3405-10% | 2.2239-1018 | 68.6241 | 2.717830 | -0.00765 | -0.28069

Table 2
Calculated and measured CMBR-temperature in
comparison with the values of the HuBBLE-parameter

Even if the CMBR temperature was previously higher, it never exceeded the PLANCK
temperature. I would like to point out the following: Although a PLANCK temperature may
be defined, it is by no means identical to the temperature of the metric wave field (0K).
Rather, it represents the maximum possible temperature of a system without violating any
physical laws, e.g. vio>c.

3.09733-10'% lg T, IK]T
~ 1.44598-10'% 150
2
85
o=
HE
= 2|5
£ E£ PLanck-Temperature 7, ®
g Bz " B2
£ o0 [ i
P 4) 180k 4
§ 8 ~
§ = CMBR-Temperature T} Hg
A < o
S48 %
~ - <
sl & ~
o 1.41678-10% iy
lgt]s]
2.7254360K —_—
L L 1 L 1 L L 1 | 1 L 1 1 L 1 L 1 1 L 1 1 L L 1
-100 -8@ -60 -49 -20 Z0

Figure 22
Temporal course of the CMBR radiation-temperature in compa-
rison with the PLANCK-temperature from incoupling until now

It is generally beheved that this is an irrevocable fixed value, which amounts to
Tio=1.416784-10K. In fact, according to this model, the CMBR 1n1t1ally would have been
above this temperature with all the resulting questions. However, it is generally assumed that
the universe — not the CMBR — should have had this temperature immediately after the BB.
However, according to the prevailing world view, the CMBR only came into being »a few
hundred thousand years later«, which is unfortunately wrong.
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Figure 23
Temporal course of the radiation-temperature of the CMBR
in comparison with the PLANCK-temperature shortly after BB

This model is based on the assumption that most of the so-called natural constants, including
the PLANCK-quantities, depend on space and time and may thus vary over time. Of course the
same should also apply to the PLANCK-temperature. Then, the value 7}y would not be as fixed
as expected. To document the temporal dependency, we use the definition in [11] as a starting
point. Since there are further masses additionally to my, as well as G; and G,, we can also
define two further temperatures. See section 3.3.1. With the help of (130) we get:

2 5 2 5 2 5
T, = M _ 1 [ne ];sz]c:lh_c T, = M _1/ne (181)
K VG kK k\ G kK k\G,

1.416784486973612-10%K 1.181665011421290-10”K 9.855642915740686-10"°K

It applies mg [xQo — M [xQo — M, as well as G |xQ§ — G [xQo — G,. Then, the following
relationships exist between the individual temperatures 7,0 [xQo — Tp:1 [xQo — Tp2. While the
first value is valid at the event horizon directly at the observer, the second one is determined
for the particle horizon. It rather depends on distance. The third value applies to the moment
t; shortly after BB with Qy=1. Now we can set about specifying the relations Tp0=f(Qo)=f(t)
and Tko=F(Qo)=f(t):

T M,¢? Q = In Tps0 = Function[M2 ¢~2/k/#"2]; (182)

4 k 0 2 kt TpST = Function[hb1/2/k/#];

T = 7“71(0l -5 hl(J)l i % TkSQ = Function[hb1 Om1/18/k/#"2.5]; 183

T8k T 8Kk Lt TKST = Function[hb1 Om1 t1°1.25/18/k/#~1.25]; (183)
1

Figure 22 was generated using the following program:

Plot[{
Log1@[TpSTI10~t4411(*Planck*),
Log1@[TkSTI 10" t4411(*CMBR*)}, {t44, -1@5, 28},
AxesOrigin -> {0, @}, PlotStyle -> {
{Thickness[0.8835], CMYKColor[0.5, 8.5, 0.08, 0.21]},
{Thickness[0.08351], Red}}];
Show[%,
GU[Log1@IT], -11, 300],
GU[Log10[5.91654] - 100, -11, 3001,
GUILog1@[8.87995] - 186, -11, 300, (184)
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GHILog1@[1.41678448] + 32, -118, 20, (184)
GHILog1@[1.44598] + 146, -1180, 20],

GH[Log1@[2.72543604], -110, 20],

GHI[Log10[3.89733] + 153, -110, -75],

ImageSize -> Full, LabelStyle -> {FontFamily -> "Chicago", 12, Black}]

The analysis shows, the CMBR never had a temperature higher than the PLANCK-temperature.
This removes all doubt. However, the variable PLANCK-temperature also means that the
prevailing models of CMBR formation are incorrect, since the recombination temperature of
hydrogen changes too. In addition, the photons initially had a much larger rest mass than the
electrons and protons.

In [24] also the existence of a background field with neutrinos is postulated, which is said
to have a temperature of approx. 1.9K. Dividing T by V2 a value of 1.92717K turns out,
which fits well the idea underlying this model that neutrinos propagate rectangularly to
photons. The Q- and Hy-values for the COBE-satellite have been determined with the help of
(176). The upper and the lower limits of the COBE-values are yellow highlighted. As we can
see, the approximation (176) is very good. The value from [1] is much too high and (177) is
outside the measuring precision of COBE. Expression (178) is out of question, since its value
is below the measured one. Moreover it’s not related to the model. That also applies to (179).
The approximation (176) in contrast, seems to hit the nail on the had. Whether that’s true,
further, more precise measurements will prove. Thus, we define:

_ hog gy Moy o5 _ s 185

T, ™ Q, ™ Q, 2.725436049K A=-1.61258-10 (185)
The calculated value is within the accuracy limits of the value 2.72548K +0.00057K mea-
sured by the COBE-satellite. Thus, the verification can be considered as a success. For the
choose of the correct relation to the calculation of 7k I leave the reader room for his own
inter-pretations. In addition, we want to calculate the corresponding frequencies for the
techni-cians too. With the help of WIEN’s displacement rule and (185) we get the following
relations:

3 _3
®, = %leoz =1.0067316-10%s"" v, = %xleoz ~160.2263GHz  (186)
T

The factor ¢ of the STEFAN-BOLTZMANN radiation rule Sy=c7" ¢, is also a function of Qo. It is
defined as follows:

- = kT
60c’7;

Q; (187)

I have to make one more comment at this point. In the context of the publications about the
PLANCK-units always is noted a so-called PLANCK-temperature 7). It’s defined in the
following manner:

2
T, = mlic = 1.416784487-10°K (188)

According to this model it should actually equal the temperature of the metric wave field, to
be correct even divided by 8n. But that’s not the case. According to [24] this results from the
GIBBS fundamental equation to:

TpdSo = d(mc?) — odL (189)
TydSo = d(moc?) — hwodL = 0 T,=0K (190)

because of wo# const. That well fits the observations. Thus, the famous expression mc*=/iw is
nothing other than a special case of the GIBBS fundamental equation for 7y=0 at the level of
the metric wave field. It thermally speaking, does not appear — otherwise we would have been
vaporised long ago. For the case L=0 the temperature would be expression (188) divided by
8n. Thus, the correct PLANCK-temperature 7) is equal to zerg, But it’s possible to specify an
initial CMBR-temperature for Qy=1. It amounts to Tx; =Tk QS/Z =5.4753571754114-10"*K.
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3.3. The gravitational constant

3.3.1. Close range

After setting-up the Concerted System of Units maybe one or the other has noticed, that we
forgot one fundamental »constant«, namely NEWTON‘s gravitational constant G. That’s
because one can do very well even without it. But since it’s used very often, we will deal with
it more detailed in this section.

We have seen, that PLANCK's quantity of action is not a constant but a function of space and
time. From the definition of k, (114) arises, that this must be applied even to NEWTON's
gravitational constant. We get after rearrangement:

’ 2¢’t
G- ¢ 2t R _ % (191)
Hoko/tH HoK Tt M, m,

The gravitational constant is obviously a function of the local conditions. By insertion of (23)
we finally get:

2
C

MoKohl

At this point, the product Q,R appears for the first time, which leads, because of the
logarithmic periodicity of the universe, to the interesting question, what is there anyway in
the distance Q,R? Possibly there is a superordinated universe of which our own only forms a
microscopic part (ry)? The cosmologic background-radiation, be continued accordingly,
would form the metric radiation-field of that superordinated universe then.

G - QR (192)

On the other hand there is the mass M; in the denominator of (191) and the mass M, (fixed
value) in (192). The term R=2cT indicates G acting along the constant wave count vector. In
section 3.1.4.1. in Figure 14 we can see, that M; depends on time and distance, my has the
value M, at intervals of R, whereas with M it’s about a historic value, only possible, if we go
back in time. Thus, we can assign R to time, Qo however to space-time.

3.3.1.1.  Temporal dependence

We replace Q, and R with the corresponding temporal functions, then we transform it onto
our local coordinates or vice-versa:

2 1 Y 3
G="Rl1+1]0,[1+L] G = RQ, S| 2t _ (193)
MZ TO TO M2 8O
<~ t ) - (t)E -
G = RQ0V[1+T]2 ~Q, ~B? G = RQOV[t— * = GQ; (194)
2 0 2 1

The term before the bracket equals the local G (frame of reference) of the gravitational
constant G. The right-hand expressions apply to t, reckoned from BB on.

The temporal course at the point r=0 is shown in Figure 24 and 25. In the early beginning of
expansion the value of the gravitational constant was equal to zero, as we can see in Figure 24
very well. The calculation turns out the same result. For the value G, respectively G and G, at
the point of time t; applies:

G = Czro/mo G, = Czrl/M1 = GQHZ G, = czrl/Mz = GQ83 (130)

3
i[hjz = GQ; = 1.15036-10""m’kg 's > (195)

G2 = 021
MZ t1

J. of Mod Phy & Quant Neuroscience Vol:1.3, Pg: 50



Rsearch Article Open Access

Figure 24
Temporal course of the gravitational
constant at the point r=0 (linear scale)
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Figure 25

Temporal course of the gravitational constant
with respect to the local age (logarithmic scale)

Therefrom results, that gravity could not have played an essential role at t<7.7ns
(quantum-universe). Therefore gravity and quantum-eftfects are excluding each other. But this
exclusion is not absolute. Rather there is a transitional zone, in which as well gravity as
quantum-effects in the scale of the entire universe have been existed. To the point of time t=0
and, qualitatively seen, shortly thereafter there was no gravity anyway.
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The expansion of the universe, increases also the distance of two masses, which are
coupled by gravitational forces. That increase is compensated by the increase of the value of
the gravitational constant. Whether this compensation is complete, we will examine more
exactly at the end of this section.

3.3.1.2.  Spatial dependence

If a temporal dependence exists, so there is also a spatial dependence. We directly get the
relation by expansion of (192) with the navigational gradient (64), the world radius depends
on time only.

G = 2L Qu,t-Byn) (196)
HoKo
~~ t t)s (2r);

O = R [”?J ((”f] ‘(EJ] 197)

| Temporal | | Spatial 1

The course for t=0 is shown in Figure 26. It shows an interesting phenomenon. The value
of the gravitational constant decreases down to zero when approaching the local world-radius
R/2. Beyond this point however, it becomes negative, the attraction turns into a repulsion.
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Figure 26
Spatial dependence of the gravitational
constant to the point of time T (linear scale)

That‘s due to the fact, that gravity acts along the constant wave count vector with the
maximum length 2¢T and it doesn’t leave the universe, far from it, it reapproaches the
observer with distances >cT. Now the attractive force is opposite to the moving direction,
leading to the negative sign of G. Both, the observer and even the starting point of the
constant wave count vector are /ocated at the event horizon, that is to say. It’s an effect of the
4D-topology. The course behind the second event horizon is increasing, because it‘s situated
in the future.

The calculation of G; at intervals of r=R/2 for t=0 is somewhat more complicated. With
r=R/2 namely, it is equal to zero. The value, we are actually looking for is a few steps from
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there at intervals of r=R/2—r; and (197) is not suited for such a small distance to the edge.
We need to embed the exact expression (56):

.2 t tys (2r 1 )5
O = R [“?) [[“?J E‘ao]) (198)

| Temporal| | Spatial 1

The value G, occurs with Qo=1. It applies:

2
G =4 (1 (1-1/1)*°) = vl = GQ;” = 9.594550966819-10"m’kg's  (199)

1 1

Thus, G decreases towards the edge R/2—r; to the value G;. There is no frame of reference
poss1ble behlndj G is not reached. Since the attractive force Fg decreases geometrically with
r* and G with r*?, it adds up to Fg~r1 %3 1In addition, there is the ever increasing delay. That
means, that the gravitational constant no longer plays a role with greater distance. A greater
distance means distances of r>0.01R. From this point on, other effects come into play.

Because of the definition (191) G is a local parameter in fact. If we calculate the value in a
certain distance, it doesn’t mean, that G has the same size everywhere on the way there. The
attractive force Fg between two bodies, moved with the metrics, is defined alongside a
constant wave count vector. For a correct equation of motion we have to build the integral
across the whole reach with dr=r,.

Since r, is not evanescent (infinite structure), but has a particular minimum size (finite
structure), the rules of infinitesimal calculus are actually applicable only then and only
approximately, if r, is small with respect to the world radius R. That’s the case for the
predominant part of the universe. More on this in the next section.

3.3.2. Far range

In section 2.3.4. we found with (64) an expression for the temporal and spatial dependence
of PLANCK's elementary-length ro, figuring at least locally a scale for the proportions
(distance). On this occasion I refer once again to the fact that this is also applied to the size of
material bodies, which is changing in the same measure as ry. Otherwise we could not
observe any expansion either.

Just particularly it is a matter of the mutual distances of material bodies. These follow a
function, which differ with the considered distance, since quantity and expansion-velocity of
the PLANCK elementary-length is changing with ascending distance to the coordinate-origin.
But only distances with the starting-point in the origin should be considered here. Of
considerable importance for deeper contemplations is even the number of line elements
(MLEs) along an imagined line with the length r (wave count vector A).

We distinguish two cases in this connection: Wave count vector with constant r and r with
constant wave count vector. Latter one fits the existing circumstances to the best, since we
can assume that no point is distinguished to other points in the cosmos. The average relative
velocity with respect to the metrics at the coordinate-origin is equal to zero at free fall. This
should be so everywhere then. With it, the expansion of the universe can be traced back to the
expansion of the metrics alone. This corresponds to the case of a constant wave count vector.

3.3.2.1. Constant distance

Because of the real lattice constant r( the wave count vector A for smaller distances r is
defined in the following manner:
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A="e (200)

er 1s the unit-vector. In the following, we consider only the Figure A however. For larger distan-
ces, we have to replace A by dA and r by dr using the corresponding expression (64) for ro:

dr

3 2r )3
O 1+t —| =
(1+0) (R)

To the solution we replace as follows (it applies R/Ty = Q,):

| —

dA = with t' =

(201)

]
—e| =

o~ 12 1 1 ~
A= SR g with vo (EJ 2=(1+t) | dr=>Redr’  (202)
27, a1’ R 2
3 A r'2 4 3 ~ *) r, ! *) arcoth for | r|>ct
A = 5 Qo az_r,z dr' = E Qo a artanh ; - T (behind the particle horizon) (203)
3 - t ) R 2r )3 d R _Q
-2 L ARJ (2 ef A, = — = 20 204
A 2Q0 (1+T) artanh (f{] T T2 (204)

1
(1+E)4
T

The wave count A follows the blue function depicted in Figure 27. Approaching to half the
world radius (R/2), it seems to be, that A strives towards infinity. If we want to define a finite
wave count Ao, we take only a certain part of the world radius to calculate the wave count for
it. Because of R/(2ry)=Qo/2 we opt for that value.
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Figure 27
Wave count vector as function
of distance r and t
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The value amounts to 0.273965R, that is 54.79% of the distance to the particle horizon (cT).
In total however an infinite value will not be reached, since ro becomes smaller and smaller
going to r;. Out there, at Q=1 is the back of beyond, we reached the particle horizon.

At first I guessed the value to be A;=Q,’, since even R=r;Q,’ apphes But that’s not the
case. The little more ambltlous calculation for r= R/2-1; — 1-10""*° under application of
the power series for (1-x)'”, multiple substitutions up to the transformation of the function
artanh-> arsinh - In, turns out Ay=3% QoInQq =~ 210 Qo= 1.7549547113-10% using the value
of (108). For A apphes t'=t =0 i.e. a constant wave count vector. But by expansion and wave
propagation »outwards« the phase angle 20,T=Q,~t"? increases continuously. And because
of (4) Ay(T) =32 VbT In VbT applies with b = 2k/s,.

The temporal dependence for several initial distances r is shown in Figure 28. The larger
the considered length, the later on the point of time, the wave count vector is defined from.
That’s easy to understand, we can regard a length as existent only then, when the world-
radius is larger or equal to. If the world-radius is smaller, so such a length doesn't exist.
Therefore, lengths larger than 0.5R aren't defined at present and function (204) does not have
a real solution before a value of e.g. t=0.75T is reached (t=0 is the present point of time).
Altogether, the wave count decreases. That results from the fact that we are considering a
constant length with expanding ro. So it happens, that MLEs are permanently »scrolled out«
at the »tail« leading to a degradation of the wave count vector at the same time.

L AI
109

0.75R

1.75495-10%

025k 2

0.1R

*’_]"I'_'

0.0IR
0.001R
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-1.0 -8.5 8.5 1.8 1.5 2.8

Figure 28
Temporal dependence of the wave count vector
for several distances r

3.3.2.2. Constant wave count vector
3.3.2.2.1. Solution

At first we start with the left expression of (204) for t=0 (a=1). It specifies the quantity of
the wave count vector at the present point and at each point of time, if we want to assume it
as constant. We just look for the function F(a, ¥ ) being nothing other as the temporal
dependence on a given length T. See (201) for a(t).

3~ . - 3~ I'F .
A = EQO artanht' -1t = EQO (a artanh r——r'Fj = const (205)
a
An explicit reduction by differentiating and zero-setting (the left expression turns to zero on
this occasion) leads to the trivial solution F=0. Otherwise, only an implicit solution can be
found as solution of the equation:
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=

a artanh % — artanh ¥ — FF-1) = 0 r(t)= TE(t) (206)
a

or in »Mathematica«-notation F1[t,r]:

Fal=Function[a=FindRoot[#1*ArcTanh[#2/#1*x]-ArcTanh[#2]-
#2*(%-1)==0,(x,1}, MaxIterations->38]; (Round[(x/.a)*18~71/18~7)"3]; (207)
F1=Function[Fa1l(1+#1)~.25,(2*x#2)~(1/3)1};

In this connection we have to be particular about the method (tangent-method) and the initial
value. There was a problem using secant method. The temporal course is shown in Figure 29.

There is only a limited definition-range for the solution. It is temporally bounded below by
the spatial singularity, the considered length is greater than the world-radius and doesn’t exist
yet. The greater the considered length, the smaller the definition range. With world-radius the
space-like vector R/2=cT is meant.

 Particle horizon

.
N l'_]'lﬁ

-1.0 -0.5 0.0 8.5 1.8 1.5 .0

Figure 29
Temporal dependence
of a given distance r

3.3.2.2.2. Approximative solutions

A simple solution for small r explicitly arises from (206) under application of the two first
terms of the TAYLOR series for the function artanh:

1 ~ ~
P 1+L)2 ~ F1elt for 1<0.01R (208)
T 2T

This exactly corresponds to the behaviour of PLANCK's elementary-length (MLE) and is valid
until 0.01R approximately. For larger distances, the ascend is larger. First we examine the
course in the proximity of t=0 as well as the ascend Ar/At with At=2-10-3. With root-
functions the ascend (dr/dt) is equal to the exponent m in this point:

r = f(l+i] ~ f(1+mi) (209)
T T
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This is shown in Figure 30. It is in the range of 1/2...3/4. Using the function Fit[] with the
help of (79) approximations of different precision for the exponent m can be found:

0.001R

0.01R

0.25R

0.4R
0.49995R

L Figure 30

p.onl T Ascend of several

‘ . P given distances in

-0.2 -0.1 0.0 0.1 0.2 the proximity of t=0

mmm = {{@, .5}};

For[s =08;i=0, %<.499, (++i), 8 += 0.01;

AppendTolmmm, {x, NIF1[0.8001, ] - F1[0, x11/0.0001}1] (210)
Fittmmm, {1, m, m"~2, m"3, ...}, m]

m = 0.513536 +0.17937r +0.490927/ with »=1/R
m = 0.500(980) + 0.500527 — 1.13082/% +2.162337° 211)
m = 0.500(1002) +0.5982067 — 3.459917° + 18.3227+° — 42.6995/* + 38.0733#°

The third equation of (211) has an accuracy of +4.83-10 and is suitable even for calculations
with more extreme demands. At close range it is better to leave out the parentheses. Indeed,
there is a need to consider the restricted definition-range, which is not being co emulated
automatically by the approximative solution. It is pointed out here once again that the
distances and velocities, regarded in this section, are a matter of space-like vectors having
nothing to do with the time-like vectors considered in section 4.3.4.4.6. of [6] Cosmologic
red-shift.

3.3.2.3. The HUBBLE-parameter

Having defined the HUBBLE-parameter only for small lengths and PLANCK’s elementary-
length (1) until now, which are following the relationships for a radiation-cosmos (m=1/2),
we have to correct our statements for larger distances. With m=m(r) the HUBBLE-parameter
H=1/r becomes also a function of distance:

m m

H = —— H, = = 212
T+t ° (212)
The course is shown in Figure 31. The metrics examined by this model is a non-linear
metrics. With it, the question has become unnecessary, whether our universe is a radiation- or
dust-cosmos. The answer is — as well, as. It's a question of the dimensions of the considered
area. For small lengths, the distance behaves like a radiation-cosmos, in the range between

zero and 0.5R like a dust-cosmos, with 0.5R like photons overlaid the metrics.
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Figure 31
HusBLE-parameter as a function of the
distance for t=0, the values r>0.5R are extrapolated

We get the expansion velocity v by the differentiation of equation (209) with respect to the
time t. In the close range m="% applies, leading to the well-known expression Ho=1/(2T). The
approximation applies to t«T. That’s actually always the fact, because we do not grow so old

anyway.

m = m-1 . m-1 .
v = if(ni = m 1+ij - ff 1+ij ~ Hf (213)
U T TU T T

The expansion-velocity Hyr as a function of the distance is shown in Figure 32. The speed of
light is reached in an essentially minor distance as with the standard-models, but only on
paper. While the size of ry at 0.5R=cT tends to r|, the expansion speed along the time-like
world line at this point is not infinite, rather it’s smaller than ¢ (0.75c).
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Figure 32
Expansion-velocity as a function of the
distance for t=0, the values r>0.5R are extrapolated
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Otherwise we found out, that the maximum propagation speed Icmaxl of the metric wave field
only amounts to 0.85166135 c. But furthermore the world-radius should be cT, whereas time-
like vectors with up to 2¢T should be possible. So we have to do with four different distances
resp. velocities, which all don’t seem to fit together. But using this model it’s possible to
solve this conflict. Let‘s have a look on Figure 33, which except for rk, is true-to-scale.

We assume the front of the metric wave field to propagate with the maximum velocity
cmax=0.85166135 ¢ (Propagation share). The share ry of the world radius, caused by it, would
be 0.85166135cT then. However, there are different values stated in the figure, why, we will
see later. As noticed furthermore, the constant wave count vector rx up to the vicinity of R/2
is running on the same track as the incoming time-like vector rr with 0.75¢ (arc length
0.75cT). But it’s tilted about the angle a;, so that we have to sum geometrically. In addition
the partial vector @ is curved. But the object we are looking for is the space-like vector rg
(expansion share @). As next we flatten the partial vector @ by bending it up to ®. Then we
project it onto rgr, it applies rr=-Tx cosp with the angle p=argc=0a—n/2=48.6231° of the
metric wave function. With a phase angle of Q=0.8652911138 we obtain with the angle
0=2.419430697 2 138.6231678° the following solution:

c \/Ci4+0121 = \/ci4+ c;cos’a = c\/0.851662 +0.75% cos® 2.41943

(214)

C

c~/0.85166°+ 0.562784> = 1.02081c A=+2.08-10" (215)

This result isn’t notably exact and even worse than that in [7], which is barely correct btw.
since there values for B, ¢ and cyv have been used, misfitting Q=1 (case 13). We will see, if
we are able to get a more exact result. If we get granular on Figure 33, we see, that rg is
curved and, even in this state, protrudes significantly beyond rg. Thus, if we want to get a
correct relation, we have to impose it with a correction factor.

On the one hand, there is the relation RS =rg /rn, we can calculate. On the other hand, with
the classic electron radius in section 3.1.5., there was a similar case with which we had
defined the correction factor {=1.01619033 eq. (141). What works in the microscopic scale,
may even work in a macroscopic scale. Let’s try to plug { into (214).

But if we want to obtain a correct

result, we have to correct Q and the

associated angles as well as the

vectors ry and rg too. That means,

- the particle horizon does not move
o with ¢max, but a little bit slower. The
%% maximum is situated behind the

~er particle horizon anyway.

World Radius
{cT,cT.cT.0}

~
-

That would be the third case, in
which an object is not at the opti-
mal, that means at the »location«
we calculated, but slightly above or
below.

,A.ﬂ.ﬂ,lgc.r_u.u_f
_
_+0.620686¢T

s

Observer
{0,0,0,T}

|
-
e~
-

31.8273° 0.8496416¢T

Propagation share r,

Figure 33
Expansion-velocity and world-radius in the
model

One possible reason could be, that infinitesimal calculus, as already suggested, reaches its
limits in this point. Because dr=r; is no longer small with respect to ro. So certain states could
be excluded, the values »latch«. For the case, that  is the significant correction factor, the
following parameters from Figure 33 come into play (Q is quite central between Qmax and
Q=1 in this case):
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Q=0.93281140128 o =135.600714°(2.3666789294) ¢ =45.600714° B=31.82728° cy=0.8496416 cr=0.527361

¢ =i+ Gk cos’a = ¢4/0.849642°+0.53586°C = 1.00c  A=+2.22-107° (216)

That equals MachinePrecision. It’s no wonder, however, as we determined the associated
values especially for that purpose, namely in the following way:

0 = SetPrecisionlq /. FindRoot[Sqrt[(RhoQIq])"2 +
(0.75/zeta*Cos[Alpha0lqlD)~2] -1 == @, {q, .9, 1}], 201]
alpha = Alphaolo]l
phi = alpha -m/2
beta= ArcTan[Sqrt[1-cM~2]/cM] (212)
cM = Rhoo[0]
cR = -08.75/zeta*Cosl[alphal
RS = RS[Q]

You will find the not yet defined functions in the annex. Now we come to the ratio
RS=rg/rn. Of course, it may be used as correction factor too. Indeed, we can make use of the
following relation:

2/3
RS> = resp. RSTC = —4.71403-107 (218)

values accordmg to (216). Applying RS** instead of { in (216), we get a residual error of
1.311-107°. Nevertheless it’s not about the same value. If we try to equate both sides of (218),
we are unable to define an exact solution. Then, the best result has a residual error of
—6.344-10"* for both values. We can also generate an exact solution using RS.

Since I wonder about it exactly, I calculated a great many of alternatives having entered the
values in table 3. The conclusion is, the universe expands somewhere on the level between
Qmax and Q=1. It is reminiscent of a surfer, who does not run on the crest of waves, but al-
ways a little off.

Nr| Name Q cu/c |—34cosa |F| crlc a® B° ¢° c A
1| Max{ |0.8652911| 0.851661 |0.562784 | £ |0.553856 |138.623|31.607 |48.623|1.015920|+1.5915-102
2| MaxR |0.8652911| 0.851661 |0.562784 |R |0.554615 |138.623|31.607 |48.623|1.016330|+1.6329-102
3| Max1 |0.8652911| 0.851661 |0.562784 |1 |0.562784 |138.623|31.607 |48.623|1.020809|+2.0809-10 2
4| ORC |0.9242251| 0.850105 (0.535861 | { |0.526448 |135.970| 31.777 | 44.030 |0.999913|-8.6977-10 >
5| ORR |0.9242251| @.850105 |0.535861 | R |0.526613 |135.970|31.777|44.030|1.000000|-1.1102-10 16
6| 0LC 0.9328114| 0.849642 |0.535861 | £ |0.535861 [135.601 | 31.827 | 45.601 |1.000000|+2.2204-10 1°
7| OCR |0.9328114| 0.849642 |0.535861 | R |0.527361 |135.601| 31.827 | 45.601 |1.000013|+1.3111-10°5
8| R~{ [0.9353288|0.849495 |0.534878 | =|0.526393 |135.493|31.843 | 45.493(0.999365|-6.3441-10*
9| Qrel (0.9470231|0.848757 |0.530330 |1 |0.530330 |135.000| 31.923 | 45.000 |1.000818 |+8.1870-10 *
10| QRel |0.9470231| 0.848757 |0.530330 | { |0.521917 |135.000| 31.923 | 45.000 |0.996386|-3.6137-103
11| QReR |0.9470231|0.848757 |0.530330 |R |0.521804 |135.000| 31.923 | 45.000 |0.996327|-3.6729-10 3
12| 000 |0.9501382|@.848544 |0.529125 |1 |0.529125 |134.869|31.946 |44.870 |1.000000|+0.0000000
13| [7] |1.0000000| 0.851661 |0.520409 |1 |0.524093 |132.864|31.607 |42.465|0.992791|-7.2090-103
14| Q1R |1.0000000| @.844304 |0.510203 |R |0.519025 |132.864|32.402 |42.864 |0.910785|-8.9214-10 3
15| Q1 |1.0000000| 0.844304 |0.510203 | { |0.518427 |132.864|32.402 | 42.864 |0.990765|-9.2344-103
Table 3

Various options of speed
addition at the particle horizon

With that I believed 1 had proven, that the correction factor { can be applied successfully
both, in the microscopic, and even in the macroscopic scale. But we are also able to generate
an exact solution variant using RS=rg/rn. It’s a shame about variant 8. If correct, we would

J. of Mod Phy & Quant Neuroscience Vol:1.3, Pg: 60



Rsearch Article Open Access

be able to calculate or even define the ratio me/mp with the help of (141). Thus, it only
suffices to a precision of —2.74:10~*, way too bad.

However, I was surprised, that version 9, that‘s that case, with which the real part of the wave
function cvm (27) has a zero-crossing (phase-jump), delivers an acceptable result even without
a correction factor. That suggests that there is also a correct solution without correction
factor. I found it with version 12. Since it’s the simplest variant, it’s probably the right one
and I will prioritize it.

The version depicted in [7], here 13, is quite near to variant 12 indeed. The representation is
not that wrong there. Because table data is cropped, here the precise parameters for the
prioritized variant 12:

Q=0.95013820167858442645 cm = 0.8485439825230016¢ cr =0.529124852680352¢ ck =0.75¢
o =134.86993657768931460° =31.94634370109298° ¢ =44.8699365776893146° RS =1.02469672804290424

c = \/ci4+ c;cos’a = C\/0.8485442+0.5291252 =1.0000000c  A=+0.000000 (219)

RS applied to (218) turns out a deviation of +2.74-10™*. That’s more than in case 6 indeed. In
Figure 34 the case 12 with expression (219) is shown once again. We have clarified the
contradictions between the various world radii and expansion velocities with it. With the help
of the Concerted International System of Units, we were able to calculate a multitude of
natural constants and variables. We will define it in detail in the next section.
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Figure 34
Expansion velocity and world radius
version 12 without correction factor
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4. The Concerted International System of Units

With the help of this model we succeeded in the calculatlon of a whole slew of natural
constants connected with the electron, proton and the 'H-atom, by way of their relatlon to the
frame of reference Qo and that perfectly exact. The maximum deviation of +1.0-10° for the
THOMSON cross section ce corresponds to the standard deviation of the numerical value given
in Table [22]. Thus, the proof according to the Sudoku method is provided.

In fact, most values are not true constants. At the same time, the value of Hy could be
specified more precisely, as well as the value of Ko, the specific conductivity of the vacuum,
on which this model is based. Since we have uncovered the relations between the indi-vidual
fundamental constants, it is appropriate to develop a program with which these are
recalculated on the spot each time according to the reference system and to use it instead of a
list of values determined independently of one another in different laboratories. With regard
to the list, this would also have the advantage that the errors would not add up.

Thus, still remains to incorporate the results and relations into the program, already published
in [1] and to compare the data calculated with it, with the CODATA,¢;s3-values. The whole
issue is presented in table 4. Please find the actualized program in the annex.

All is based on the base items of subspace, which are fixed values, independent on any
frame of reference. With it, it suffices, to define five genuine constants (ug, ¢, Ko, %, and k)
only as base quantities, plus one so-called Magic Value, here me, to the identification of the
frame of reference Qq.

The comparison with the CODAT Ayp13-values turns out to be more complicated, since not
all values of the model appear in the corresponding documents. On the other hand, there are
values stated, which, in comparison with other values, can be calculated with the help of
former ones, lead to a deviant result. The PLANCK-units turned out to be the worst. The given
values differ by up to 6.5-10° from the ones calculated with ¢, €, G and A. However,
according to the present model, the root expressions are considered to be exact. For this
reason, I used at all PLANCK-units the corresponding root expressions with the CODAT Az¢;s-
values for ¢, &, G and 7, instead of the specified numerical values to the comparison.

Furthermore, the use of the value me/mp specified there leads to a reduction in accuracy.
Therefore I used the quotient of the individual values. Another criticism is that a rounded
value of the BOLTZMANN constant k is used.

With the PLANCK-temperature there is a further difference. Even if we can calculate such a
value, the actual value is 0K, since thermal energy is completely eliminated by the angular
momentum (see section 3.2.2.). The CMBR-temperature is considered instead. This depends
on Qp too. If we rearrange (185) after Qo, the frame of reference also depends on its
temperature. With smaller Qo, e.g. in the vicinity of the SCHWARZSCHILD-radius of a BH, the
CMBR-temperature increases extremely.

There is also no addition of miscellaneous effects, such as temperature plus gravity in
comparison to another frame of reference with the velocity v. All values are linked with Qy, if
one value changes, all other change too. If one effect supervenes, it is already a new frame of
reference. Any additional effect changes the value of Q. With it all values, except for the
fixed ones, form a so-called Canonical Ensemble.

During set-up of the table I incorporated yet some other values, simply dependent on the
already defined ones, into the system, as there are G, ae, Ze, Ve, Me>» UN, Do, Go, K;j and Rk.
Except for r., whose definition was wrong (eternal typo), I used the expressions and symbols
stated in the CODATA,p;5-document [22] for the other values. The quantities alpha (o) and
delta (8) are marked as fixed values because they are invariable in general. However, for
special cases with Q=1 as in Section 3.2.2.2. there are the functions alphaF[Q] and deltaF[Q].
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5. Notes to the appendix

The basic formulas and definitions used in this work, as well as the program to the
calculation of Table 4, are shown in the appendix. The programs to the rendering of the
graphics, which has been taken from previous publications, can be found in [6], [7] and [19].
It’s about the source code for Mathematica/Alpha. Then, the data can be converted into a text
file (UTF8), which can be opened directly. Data is presented as a single cell then. However, it
is not advantageous to evaluate the entire source code in one single cell. To split, use the
Cell/Divide Cell function (Ctrl/Shift/d). However, with this procedure there may be problems
with special characters, not correctly transferred (e.g. €, €) or even lead to the conversion
being aborted.

It is more advantageous to copy and paste data page by page into the text file via clipboard.
However, then each line is present as a separate cell. With the command Cell/Merge
(Ctrl/Shift/m) the cells belonging together can be merged, ideally in blocks between the
headings.

If you do not want to calculate Table 4 and the graphics, you can delete the notebook below
the point “End of Metric System Definition”. Then, the values shown in the «Variable”
column are available for own calculations. Expressions within (*...*) are commented out.

Suggestion to the reader: If one adds up all the errors in Table 4, it should be possible to
achieve a minimum error by slightly manipulating o, /; und Qo. Then all values should be

calculated correctly.

[$]

Symbol | Variable | Calculated (CA) § ((i)og é\;ézg;t;w) +Accuracy | Ay (CA/ICD-1) Unit

c c 2.99792458 108 S |2.99792458 108 defined defined ms™!
€0 ep0 8.854187817620390-10-12 | S | 8.854187817620390-10-"2 defined defined As V-'m-!
Ko ka0 1.369777663190222:10% | S |n.a. n.a. defined AV-m-
Ho my0 1.256637061435917:106 | S | 1.256637061435917-10-6 exactly exacty | Vs A'm
k k 1.3806485279 102 | S |1.380649 1023 statistic | +3.41941-10-7 JK
h1 hb1 8.795625796565460-10% | S |n.a. n.a. defined Js
h hb0 1.054571817000010:10-34 | C | 1.054571817:10-3 defined | +8.88178:10-15 Js
Qo Qo 8.340471132242850-10% | C | 8.3415-100 © | 3.3742:102 | -1.23343-10~# 1
Zo Z0 376.7303134617700 F | 376.73031366857 1.5-10-10 | -5.48932:10-10 Q
G GO 6.674301499999827-10-1" | C | 6.674301499999999-10-1 2.2:10-5 | -5.48932:10-10 mkg's2
Gi G1 9.594550966819210-10-13%| C |n.a. n.a. unusual m3kg-'s2
G2 G2 1.150360790738584:10-1%| F | n.a. n.a. unusual mkg's2
M2 M2 1.514002834704114-10"4 | F | n.a. n.a. unusual kg
M M1 1.815248576128075:10% | C | n.a. n.a. unusual kg
Mp mp 1.6726219236951 -10-2" | C | 1.6726219236951 -10-% 1.1-10-5 | -2.22045-10-16 kg
Me me 9.109383701528  -10-3' | M |9.109383701528  -10-31 3.0-10-10 magic 0 kg
mo m0 2.176434097482374-10-8 | C | 2.176434097482336-10-8 calculated | +1.70974-10-"4 kg
M MH 2.609485798792167-10%° | C |n.a. n.a. unusual kg
me/mp | mep, u' | 5.446170214846793-10+ | F | 5.4461702148733 104 6.0-10-""| —4.867-10-12 1
To2 Tp2 9.855642915740690-10'53 | C | n.a. n.a. unusual K
Tp1 Tp1 1.181665011421291-10% | C | na. n.a. unusual K
Too Tp0 1.416784486973613-10%2 | C | 1.416784486973588 -1032 1.1-10-5 | +1.75415-10-14 K
Tkt Tk1 5.475357175411492-10%52 | C |n.a. n.a. unusual K
Tho TkO 2.725436049425770 C | 2.72548 © | 4.3951-105| -1.61258-10-° K
r r1 1.937846411698606:10% | F | n.a. n.a. unusual m
fo r0 1.616255205549261:10-%5 | C | 1.616255205549274-10-3% |  calculated | —8.21565-10-"5 m
3 re 2.817940324662071-10-15 | C | 2.817940326213  -10-'5 4.5-10-"0 | -5.50377-10-10 m
Ac NbarC | 3.861592677230890:10-13 | C | 3.861592679612  -10-13 3.0:10-10 | -6.16614-10-10 m
Ac AC 2.426310237188940-10-12 | C | 2.4263102386773 -10-'2 3.0-10-10 | —6.13425-10-10 m
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(]

Symbol | Variable | Calculated (CA) § g)OCDggé\ ZIZO):t;CD) +Accuracy | Ay (CA/ICD-1) Unit

a a0 5.291772105440689:10-'* | C | 5.291772109038  -10-"" 1.5-10-10 | —-6.79793-10-10 m
R R 1.348032988422084-10% | C |n.a. at issue at issue m
R RR 4.368617335409830 C |na. at issue atissue Gpe
t 21 6.463959849512312:10-%| F | n.a. n.a. unusual S
to 210 5.391247052483426:1044 | C | 5.391247052483470-1044 | calculated | -8.43769-10-15 S
T 2T 4.496554040802734-107 | C | 4.497663485280829-10"7 |1.1385-10-3 | -2.46671-10~* s
T 2T 1.424902426903056-1010 | C | 1.425253996152531-1010 |1.1385:10-3 | —2.46671-10+ a
R Reo 1.097373157632934-107 C | 1.097373156816021-107 1.9-10-12 | +7.44426-10-10 m-!
w1 Om1 1.547039312249824-10' | F |n.a. n.a. unusual s
wo Omo0 1.854858421929227-104 | C | 1.854858421929212-104 calculated | +8.65974-10-"5 s
WR= OmR« | 2.067068668297942:10% | C | 2.067068666759112-101 1.9-10-12 | +7.44451-10-10 s
CR= CRe 3.289841962699988:10% | C | 3.289841960250864:1015 1.9:10-12 | +7.44450-10-10 Hz
Ho HO 2.223925234581364:10-18 | C | 2.223376656062923-10-"8 | 1.1385-10-3 | +2.46732-10~* s
Ho HPC[QO] | 68.62410574852400 C | 68.60717815146482<—1© | 1.1385-10-3 | +2.46732:10~* | kms-'Mpc-'
a1 q1 1.527981474087040-10'2 | F |n.a. n.a. unusual As
do q0 5.290817689717126-10-'° | C | 5.2908176897171 -10-"° | calculated | +4.44089:10-15 As
e qe 1.602176634000007-10-"% | C | 1.602176634 10-19 exactly | +4.44089-10-15 As
U U1 8.698608435529670:1087 | F | n.a. n.a. unusual v
Uo uo 1.042939697003725-1027 | C | 1.042939697286845-102 calculated | —2.71463-10-"0 v
Wi W1 1.360717888312544-10"%! | F | n.a. n.a. unusual W
Wo W0 1.956081416291675-10° C |1.956081416291641-10° calculated | +1.73195-10-"4 W
S S1 5.605711433987692:104%6 | F | n.a. n.a. unusual Wm-2
So S0 1.388921881877266-10'2 | C |n.a. n.a. unusual Wm-2
Oe oe 6.652458724888907-10-2° | C | 6.6524587321600 -10-2 9.1-10-10 | -1.09299-10-° m?2
e ae 1.159652181281556-10-3 | C | 1.1596521812818 -10-3 1.5:10-10 | —2.10054-10-"3 1
Oe ge -2.00231930436256 C | -2.00231930436256 1.7-10-13 | —2.22045-10-"6 1
Ye ye 1.760859630228709-10"" | C | 1.7608596302353 -10" 3.0-10-10 | -3.74278:10-12 s1T-
Me pe -9.28476469866128-1024 | C |-9.284764704328 -10-%# 3.0-10-10 | -6.10325-10-10 JT-
MB uB -9.27401007265130-1024 | C |-9.274010078328 -10-% 3.0-10-10 | -6.12109-10-10 JT-
N UN 5.050783742986264:10-2" | C | 5.0507837461150 -10-Z 3.1-10-"0 | -6.19456:10-10 JT-
o ®0 2.067833847194937:10-15 | C | 2.067833848 ........ 10-15 exactly | —3.89327-10-10 Wb
Go GQo 7.748091734611053:10-5 | C | 7.748091729000002-10-5 exactly | +7.24185-10-10 S
Ky KJ 4.835978487132911-10 | C |4.835978484 ........ 10 exactly | +6.47834-10-10 Hz V-
Rk RK 2.581280744348851-104 C | 2581280745 ........ 104 exactly | —2.52258:10-10 Q
a alpha 7.297352569776440-10% | F |7.297352569311  -10-3 1.5:10-10 | +6.37821-10-"" 1
) delta 9.378551014802563-10-" | F | 9.378551009654370-10-" 1.5-10-10 | +5.48932-10-10 1
X xtilde 2.821439372122070° F |2821439372 ........ exactly exactly 1
o g 5.670366673885495:108 | C | 5.670366673885496-10-8 exactly exactly Wm-2K+4

S Subspace value (const)
F Fixed value (invariable)

Table 4:

Concerted International
System of Units

M Magic value
C Calculated (calculated)

MachinePrecision — +2.22045-10-16

Unfortunately not all values could be calculated, e.g. the values of other elementary particles
and the ones of heavier nuclei. A lot of questions remain open. Also the values aren’t
concerted to 100%, i.e. even my system is yet a little bit out of tune. But there is the option to
improve it.
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The Concerted International System of Units

Declarations

Off [General: :spell]

Off[General: :spelll]
Off[InterpolatingFunction: :dmval]
Off [FindMaximum: :1stol]
Off[FindMaximum: :nrnum]
Off[FindRoot: :nlnum]

Off [NIntegrate: :inumr]
Off[NIntegrate: :precw]
Off[NIntegrate: :ncvb]

Units
km = 1000;
AU = 149597870.7 km;

Pc 648000 AU/Pi;
Mpc = 1076 pc;
minute = 60;

hour = 60 minute;
day = 24*hour;

year = 365.25(*365.24219879%) *day;

Mo = 1.98840%10730 (*Sun mass kg¥*) ;

Ro = 6.96342*10%8 (*Sun radius m¥*) ;

ME = 5.9722*10724 (*Earth mass kg*);

RE = 6.371000785*10%6 (*Earth radius m¥*) ;

FO = 2.51*10%-8 (*Zero flux brightness Wm"-2%);
LO = 3.09*%10728 (*Zero luminosity W¥*);

Lla= 6.40949*10~35 (*Standard candle SNIa W¥);

Basic Values

c=2.99792458*10"8; (*Speed of light¥*);
my0=4 Pi 107-7; (*Permeability of wvacuum¥) ;
ka0=1.3697776631902217*10493; (*Conductivity of wvacuum¥) ;
hbl=8.795625796565464*10426; (*Planck constant slashed init¥*);
k=1.3806485279*10~-23; (*Boltzmann constant¥) ;
me=9.109383701528*10~-31; (*Electron rest mass with Q0 Magic value 1¥%);
mp=1.6726219236951*104-27; (*Proton rest mass Magic value 2%);

Auxilliary Values

mep=SetPrecision[me/mp,20] ; (*Mass ratio e/p¥*);
ma=1822.8884862171988 me; (*Atomic mass unit*);
e=ArcSin[0.3028221208819742993334500624769134447]-3Pi/4; (*RnB angle € null(fix)*);
y=Pi/4-€; (*RnB angle y nullvector*) ;
{=1/ (36Pi”*3) (3Sqrt[2])~(-1/3) /mep; (*re-correction factor¥*) ;
xtilde=3+N[ProductLog[-3E*-3]]; (*Wien displacement law constant (v)¥*);
alpha=Sin[Pi/4-\[Epsilon] ]2/ (4Pi) ; (*Correction factor QED \[Alpha] (Q0)*) ;
delta=4Pi/alpha*mep; (*Correction factor QED \[Delta] (QO0)*) ;

(*Q0=(9Pi*2 Sqgrt[2]delta me/my0/ka0/hbO0SI)“*(-3/4) (*Phase Q0=2w0t during calibration¥) ;*)
Q0=(9 Pi”*2 Sqrt[2]delta me/my0/kal/hbl)* (-3/7); (*Phase Q0=2w0t after calibration¥*);

Composed Expressions

Z0=myO0 c; (*Field wave impedance of vacuum¥) ;
ep0=1/ (my0 c*2) (* Permittivity of vacuum¥) ;
Re=1/(72 Pi”~3)/rl Sqrt[2] alpha”2 /delta Q0% (-4/3); (*Rydberg constant¥*) ;
Oml=ka0/ep0; (*Cutoff frequency of subspace*) ;
Om0=0m1/Q0; (*Planck’s frequency¥*) ;
OmR=»=2 Pi c Rx; (*Rydberg angular frequency*) ;
CR»=c Rx; (*Rydberg frequency*) ;
HO=0m1/Q0%2; (*Hubble parameter local¥) ;
H1=3/2*HO; (*Hubble parameter whole universet*);
rl=1/ (ka0 20); (*Planck’s length subspace¥*) ;
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a0=9Pi”*2 rl Sqrt[2] delta/alpha Q0% (4/3); (*Bohr radius*);
AbarC=a0 alpha; (*Reduced Compton wavelength*) ;
AC=2 Pi NbarC; (*Compton wavelength electron¥) ;
re= rl (2/3)*~(1/3)/C Q0~(4/3); (*Classic electron radius*);
r0= rl QO; (*Planck’s length vac¥*);
R= rl Q0*2; (*World radius¥*) ;
RR=R/Mpc/1000; (*World radius Gpc*) ;
tl=1/(2 Oml) ; (*Planck time subspace*) ;
t0=1/(2 OmO0) ; (*Planck time vacuum*) ;
T=1/(2 HO) ; (*World time constant¥*);
TT=2T/year; (*The Age*);
hb0=hb1/Q0; (*Planck constant slashed*) ;
h0=2Pi*hb0; (*Planck constant unslashed*) ;
ql=Sqrt[hbl/z0]; (*Universe charge¥*) ;
q0=Sqrt[hbl1/Q0/Z0] ; (*or ge/Sin[n/4-€] Planck charge*) ;
ge=q0 Sin[Pi/4-€]; (*Elementary charge e*);
M2=my0O kaO hbl; (*Total mass with Q=1%);
M1=M2/Q0; (*Mach mass¥*) ;
m0=M2/Q0%2; (*Planck mass downwardly¥*) ;
(*m0=(9Pi”2Sqrt[2] *delta*me) *.75* (my0*kaO*hb0SI)*.25; (*Planck mass upwardly¥*) ;*)
mp=4Pi me/alpha/delta; (*Proton rest mass with QO0*) ;
(*me=Sqrt[hbl/Q0/Z0] *Sin[Pi/4-€]; (*if using QO as Magic valuet*) ;*)
MH=M2/Q0%3; (*Hubble mass*) ;
GO0=c*2*r0/m0; (*hbO*c/m0*2%) (*Gravity constant local*);
G1=G0/Q0"2; (*Gravity constant Mach¥*) ;
G2=G0/Q0*3; (*Gravity constant Init¥);
U0=Sqrt[c*4/4/Pi/ep0/GO] ; (*Planck voltage generict*) ;
Ul=U00*Q0; (*Planck voltage Mach¥*) ;
Wl=Sqrt[hbl c*5/G2]; (*Energy with Q=1%);
WO=W1/Q0*2; (*Planck energy*) ;
S1=hbl Oml1*2/rl1*2; (*Poynting vector metric with Q=1%*);
S0=S1/Q045; (*Poynting vector metric actual¥);
Sk1=4Pi*2*E~2/1874/60*hbl*Oml1+2/rl1"2; (*Poyntingvec CMBR initial¥) ;
Sk0=Sk1/Q074/Q0~3/E*2; (*Poyntingvec CMBR actual*);
wkl=Skl/c ; (*Energy density CMBR initial¥);
wk0=Sk0/c ; (*Energy density CMBR actual¥) ;
Wkl=wkl*rl”3; (*Energy CMBR initial*);
pB=-9/2Pi*2 Sqrt[2 hbl/Z0]delta Sin[y]/my0/ka0 QO0*(5/6) ; (*Bohr magneton*) ;
pN=-pB*mep ; (*Nuclear magneton¥*) ;
pe=1.0011596521812818 pB (*Electron magnetic moment*) ;
Tkl=hbl Oml/18/k; (*CMBR-temperature Q=1*%*) ;
Tk0=Tk1/Q0*(5/2) ; (*CMBR-temperature*) ;
Tp0=Sqrt[hb0 c~5/G0]/k; Tpl=Tp0*Q0; Tp2=Tp0*Q0"2; (*Planck-temperature*) ;
&0=Pi Sqrt[hbl Z0/Q0 ]/Sin[Pi/4-€]; (*Magnetic flux quantum Pi h/e)*);
GQO0=1/Pi/Z0*Sin[Pi/4-€]*2; (*Conductance quantum e”~2/Pi h¥*);
KJ=2q0 Sin[Pi/4-€]/hO0; (*Josephson constant 2e/h¥);
RK=.5 my0 c/alpha; (*von Klitzing constant pOc/2a¥*) ;
ce=8Pi/3 re”2; (*Thomson cross section (8Pi/3)re”2¥%);
ae=SetPrecision[pe/pB,20]-1; (*Electron magnetic moment anomaly¥*) ;
ge=-2(l+ae) ; (*electron g-factor¥);
ye=2 Q0 Abs[pe]/hbl; (*electron gyromagnetic ratio¥*);
ol= SetPrecision[Pi*2/60 k*4/c*2/hbl*3, 16]; (*Stefan-Boltzmann constant initial¥*);
0=01*Q0"3; (*Stefan-Boltzmann constant*) ;
p=1/mep; (*Mass ratio p/e¥*);

Basic Functions

cMc=Function[-2 I/#/Sqrt[l- (HankelH1[2,#]/HankelH1[O, #])"2]1];
Qr=Function[#1/Q0/2/#2];

PhiQ=Function[If[#>10%4,-Pi/4-3/4/#,

Arg[l/Sqrt[1- (HankelH1[2,#]/HankelH1[O0,#])~2]]-Pi/2]]; (*Angle of c arg 6(Q)*);
PhiR=Function[PhiQ[Qr[#1,#2111;

RhoQ=Function[If[#<10%4,N[2/#/Abs[Sqrt[1-

(HankelH1[2,#] /HankelH1[0,#])72]1]],1/Sqrt[#111;

RhoR=Function[RhoQ[Qr[#1,#2]111;

AlphaQ=Function[Pi/4-PhiQ[#]1]; (*Angle a%*);
AlphaR=Function[N[Pi/4-PhiR[#1,#211];

BetaQ=Function [Sqrt[#1]* ((#2)~2+#1°2*% (1- (#2)~2)*2)*(-.25)];

GammaPQ=Function [N[PhiQ[#]+ArcCos[RhoQ[#]*Sin[AlphaQ[#]]1]1+Pi/4]];
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rq={{0,0}};

For[x=-8;i=0,x<4,++i,x+=.01;AppendTo[rqg, {10*x,N[10*x*RhoQ[10%x]]}]];
RhoQl=Interpolation[rq];

RhoQQl=Function[If[#<10~3,RhoQl1[#],Sqrt[#]11]; (*Interpolation RhoQ¥*) ;
Rk=Function[If[#<1075,3/2*Sqrt[#]*NIntegrate[RhoQQl [x], {x,0,#}],6#]11;
Rn=Function[Abs[3/2*Sqrt[#] *NIntegrate [RhoQQl [x] *Exp[I* (PhiQ[x])],{x,0,#}111;
RnB=Function[Arg[NIntegrate[RhoQQl [x] *Exp[I* (PhiQ[x])],{x,0,#}111;
alphaF=Function[Sin[Pi/2+e- (*RNBP*)RnB[#]]~2/(4Pi)]; (*Correction factor QED « (Q)*);
deltaF=Function[4Pi/alphaF [#] *mep] ; (*Correction factor QED & (Q)*) ;

End of Metric System Definition

Functions Used for Calculations in Articles

GV=Function[Graphics[Line[ { {#1,#2},{#1,#3}}111: (*Graphics help function¥*) ;
GH=Function[Graphics[Line[ {{#2,#1},{#3,#1}}111: (*Graphics help function¥*) ;
Xline=Function[10733* (#1-#2)]; (*Value x vertical line¥);
Expp=Function[If[#<0,1/Exp[-#],Exp[#]11]; (*To avoid calculation errors*);

BRQP=Function[Rk[#] Sqgrt[(Sin[AlphaQ[#]]/Sin[GammaPQ[#]])*4-111;
BGN=Sqrt[2]*BRQP[.5]/3;

gdc=Function[10” (LoglO[E]* (-1) (1*#)*2/(1 + 1*#72)~2)]; (*Group Delay Correction¥) ;
cc = xtilde”2;

b=xtilde;

sl = 8* (#1/(2* ((#1/2)*2 + 1)))*2 & ;

s2 = (b*(#1/2))*3/(Expp [b*(#1/2)] - 1) & ;

brqg = {{0, 0}};

For[x = -8; i =0, x < 50, (++i), x += .05;

AppendTo[brqg, {10“x, N[BRQP[10~x]/BGN/(2.5070314770581117*10"x) ]}11]

BRQO = Interpolation[brq];
BRQl = Function[If[# < 8*1074, BRQO[#], Sqrt[#]1]1;
Psil = NIntegrate[(1/2)*Log[l + (#1/(cc*Sqrt[Q]))*2] -

((#1/ (cc*sqrt[Q1))~2)/(1 + (#1/(cc*sqrt[Q]))*2) -
Log[Cos[-ArcTan[#1/ (cc*Sqrt[Q])] +
#1/ (cc*sqrt[Q]) /(1 + (#1/(cc*sqrt[Q]))*2)11,
{Q, 0.5, 3000}] & ; (*Approximation*) ;
Psi2 = NIntegrate[(1/2)*Log[l + (#1/(cc*BRQ1[Q]))*2] -
((#1/(cc*BRQ1[Q]))*2)/(1 + (#1/(cc*BRQ1[Q]))"2) -
Log[Cos[-ArcTan[#1/ (cc*BRQ1[Q])] +
#1/ (cc*BRQL[Q]) /(1 + (#1/(cc*BRQ1[Q]))*2)1],

{Q, 0.5, 3000}] & ; (*Exact §*);
HPC=Function[Oml/#*2/km*Mpc] ; (*HO=f (QO0) [km*s-1*Mpc-1]*) ;
Qv=Function[a4712=SetPrecision[#2,309] ;#1* (1-a4712~2)~(1/3)1: (*Q(v/c) generic¥);
Qv0=Function[ad4713=SetPrecision[#,309] ;Q00* (1-a471322)~(1/3)1]; (*Q(v/c, Q0)*);
vQ=Function[ad4714=SetPrecision|[ (#2/#1)~3,309];

Sqgrt[SetPrecision[1-a4714,309]1]; (*v/c(Q) generic¥);
vQO0=Function[a4715=SetPrecision[ (#/Q0) ~3,309];

Sqrt[SetPrecision[1-a4715,309]1]; (*v/c(Q0), QO0)*);
Q890=3/2* (re/x0)*3 ; (*Phase angle/ (890 [1])%*);
VrelU=Function[ScientificForm[SetPrecision[Sqrt[l-SetPrecision[1l/

(1+# ge/me/c*2)72,180]]1,180]1180]1]; (*vrel (U) /c*) ;
DVrelU=Function[ScientificForm[SetPrecision[l- (Sqrt[l-SetPrecision[1l/

(1+# ge/me/c~2)~2,180]]),180],10]1]; (*1-vrel (U) /c*) ;
QrelU=Function[SetPrecision[SetPrecision[1l/

(1+# ge/me/c*2)~(2/3),180],16]11; (*Qrel (U) /QO0%*) ;
QQrelU=Function[QO0* (QrelU[#])]; (*Qrel (U) *) ;
UeV=Function[a4711l=SetPrecision[#,1000];

(me c*2(1/Sqrt[1-a4711+2]-1))/qel; (*U(v) 309%) ;

Helpful Interpolations

Not really needed. Evaluate only once the lines below the upper lines, then store data in e.g. rs={data} and close the cells. Evaluation can take a while.
Don’ t delete but always evaluate them. Disable evaluation for the lines below the upper line until Interpolation line then. Save notebook.

rs={"Insert output from below"};

rs={};

For[x=(-3); i=0,x<3, (++i) ,x+=.025;

AppendTo[rs, {10%x,NIntegrate [RhoQQ1l[z],{z,0,10”x}]/Abs[NIntegrate[RhoQQl[z]*
Exp[I/2*PhiQ[z]],{z,0,10"x}1]1}1]
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rs
RS=Interpolation[rs]; (*Relation rk/rn¥*) ;
RS1=Function[l/RS[#]1];

rnb={"Insert output from below"};

rnb={};

For[d=-6.01; i=0,d<6.01, (++i) ,d+=.05; AppendTo[rnb, {d,RnB[107d]/Pi}]]

rnb

RNBl=Interpolation|[rnb]; (*RnB angle € nullvector from Q%) ;

RNB=Function[If[#<10~-8,Null,If[#<1076,RNB1[LoglO[#]],-.25]11]1;
RNBP=Function[If[#<10~-8 ,Null,If[#<1076,Pi RNB1[LoglO[#]],-Pi/411]1;
alphaF=Function[Sin[Pi/2+e-RNBP[#]]172/(4Pi)]; (*Redefinition 4 faster Calculation*);

gqgl={"Insert output from below"};

aql={};

For[xy=(-17); i=0,xy<5, (++1i) ,xy+=.05; AppendTo[qql, {10*xy,N[Sin[(Pi/2-
RnB[10%xy]+€)]]1}1]

qql

QQ0=Interpolation[qgql] ; (*Relation ge/q0¥*) ;
QQO=Function[If[#<1075,Q00[#],0.3028223504900885]];
QQl1=Function[If[#<1045,1/QQ00[#],3.3022661582990733]];

inb={"Insert output from below"};

inb={};

For[d=-6.01; i=0,d<6.01, (++i) ,d+=.05; AppendTo[inb, {RnB[107~d]/Pi,d}]]

inb

INBl=Interpolation[inb]; (*InvRnB Q from angle € nullvector¥*) ;

INB=Function[Which[-1<#<0,INB1[#],#==0,3/2Pi Q0~.25,#>0,Null]];
INBP=Function[Which[-Pi<#<0,INBL [#/Pi] ,#==0,3/2 Q0~.25,#>0,Null]];

Reference Values CODATA 915 to the Comparison only

hb0SI=1.054571817*10%-34; (*Planck constant slashed*) ;
h0SI=6.62607015*10~-34; (*Planck constant unslashed*) ;
ep0SI=8.854187812813*10%-12; (*Permittivity of wvacuum¥) ;
kSI=1.380649*10~-23; (*Boltzmann-constant¥*) ;
G0SI=6.6743015*10~-11; (*Gravity constant ¥*);
ka0SI=1.30605*10493; (*1.3057 Conductivity of vacuum¥) ;
qeSI=1.602176634*10"-19; (*Elementary charge e¥*);
q0SI=Sqrt[hb0SI/z0]; (*Planck-charge*) ;
meSI=9.109383701528*10~-31; (*Electron rest mass with QO0*) ;
mpSI=1.6726219236951*10%-27; (*Proton rest mass¥*) ;
alphaSI=7.297352569311*10~-3; (*Fine structure constant*);
deltaSI=(4Pi)“*2 hb0SI/Z0SI/geSI*2 *meSI/mpSI; (*Factor QED¥) ;
mnSI=1.6749274980495*10~-27; (*Neutron rest mass¥*);
maSI=1.6605390666050*10~-27; (*Atomic mass unit¥*);
mepSI=5.4461702148733*10"-4; (*Mass ratio e/p¥*);
m0SI=Sqrt[hb0SI c/GO0SI] (*2.17643424*10~-8 garbage*) ; (*Planck-mass¥*) ;
r0SI=hb0SI/m0SI/c(*1.61625518*10~-35 garbage*) ; (*Planck-length¥*) ;
t0SI=.5Sqrt[hb0SI GOSI/c*5] (*5.39124760*10~-44 garbage*) ; (*Planck-time*) ;
$0SI=2.067833848*10~-15; (*Magnetic flux quantum 2Pih/ (2e)*);
GQOSI=7.748091729*10*-5; (*Conductance quantum 2e”2/2Pih¥*) ;
UOSI= Sqrt[c*4/(4 Pi epOSI GOSI)](*1.04295*%10~27 garbage*) ; (*Planck-voltage¥*) ;
U1lSI=U0SI QO0; (*Planck-voltage universe*) ;
WO0SI=Sqrt[hb0SI c*5/GOSI]; (*Planck-energy*) ;
TpSI=SetPrecision[Sqrt[hb0SI c*5/GOSI]/k,16] (*1.41678416*10732 Planck-temperature¥*) ;
TCOBE=2.72548; (*+0.00057K CMBR-temperature/COBE¥) ;
Z0SI=376.73031366857; (*Field wave impedance of vacuum¥) ;
KJSI=483597.8484*10"9; (*Josephson constant 2e/h*);
RKSI=25812.80745; (*von Klitzing constant pOc/2a*) ;
pBSI=-9.274010078328*10"-24; (*Bohr Magneton*) ;
BNSI=5.050783746115*10%-27; (*Nuclear magnetont*) ;
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R~SI=1.097373156816021*10"7; (*Rydberg constant¥*) ;
cR~SI=3.289841960250864*10~15; (*Rydberg frequency*) ;
OmR>~SI=2Pi*cR~SI; (*Rydberg angular frequency¥*) ;
a0S8I1=5.2917721090380*10~-11; (*Bohr radius*);
reSI=2.817940326213*10~-15; (*Classical electron radius*);
NCSI=2.4263102386773*10~-12; (*Compton wavelength electront*) ;
NAbarCSI=3.861592679612*104-13; (*Reduced Compton wavelength¥*) ;
ceSI=6.652458732160*10~-29; (*Thomson cross section (8Pi/3)re”2%);
peSI=-9.284764704328*10*-24; (*electron magnetic moment¥) ;
aeSI=1.1596521812818*10~-3; (*Electron magnetic moment anomaly¥*) ;
geSI=-2.0023193043625635; (*electron g-factor*);
yeSI=1.7608596302353*10~11; (*electron gyromagnetic ratio*);
0SI=5.670366673885496*10*-8; (*Stefan-Boltzmann constant¥*) ;
QCB=8.3415*10760; (*Phase angle COBEY¥) ;

Calculating Table 4

data={

{"c",ScientificForm[c,16],ScientificForm[c,16], "defined"},
{"ep0" ,ScientificForm[N[ep0] ,16] ,ScientificForm[N[ep0],16], "defined"},
{"ka0" ,ScientificForm[N[ka0],16],"n.a.", "defined"},

{"myO0" ,ScientificForm[N[myO] ,16] ,ScientificForm[N[my0],16], "exactly"},
{"k" ,ScientificForm[N[k] ,16] ,ScientificForm[kSI,16],
ScientificForm[kSI/k-1,NumberSigns->{"-","+"}1},

{"hbl" ,ScientificForm[hbl,16],"n.a.", "defined"},

{"hb0" ,ScientificForm[hb0,16],ScientificForm[hb0SI,16],
ScientificForm[hb0/hb0SI-1,NumberSigns->{"-","+"}]},
{"Q0",ScientificForm[Q0,16],ScientificForm[QCB,16],
ScientificForm[Q0/QCB-1,NumberSigns->{"-","+"}]},

{"20 " ,NumberForm[Z0,16] ,NumberForm[Z0SI,616],
ScientificForm[Z0/Z0SI-1,NumberSigns->{"-","+"}1},

{"GO " ,ScientificForm[GO0,16],ScientificForm[GOSI,b16],
ScientificForm[Z0/Z0SI-1,NumberSigns->{"-","+"}1},

{"Gl ",ScientificForm[Gl,16],"n.a.","unusual"},

{"G2 " ,ScientificForm[G2,16],"n.a.","unusual"},

{"M2" ,ScientificForm[M2,16],"n.a.","unusual"},
{"M1",ScientificForm[M1l,16],"n.a.","unusual"},
{"mp",ScientificForm[mp,16],ScientificForm[mpSI,16],
ScientificForm[mp/mpSI-1,NumberSigns->{"-","+"}1},
{"me",ScientificForm[me,16],ScientificForm[meSI,16], "magict0"},
{"m0",ScientificForm[m0,16],ScientificForm[m0SI,b16],
ScientificForm[m0/m0SI-1,NumberSigns->{"-","+"}1},

{"MH" ,ScientificForm[MH,16],"n.a.","unusual"},
{"mep" ,ScientificForm[mep,16],ScientificForm[mepSI,f16],
ScientificForm[mep/mepSI-1,NumberSigns->{"-","+"}]},

{"Tp2", NumberForm[Tp2, 16], "n.a.", "unknown"},

{"Tpl", NumberForm[Tpl, 16], "n.a.", "unknown"},

{"Tp0", NumberForm[TpO, 16], ScientificForm[TpSI, 16],
ScientificForm[Tp0/TpSI - 1, NumberSigns -> {"-", "+"}1]1},
{"Tkl", ScientificForm[Tkl, 16], "n.a.", "unknown"},

{"TkO0", NumberForm[TkO, 16], StringJoin[ToString[NumberForm[TCOBE, 16]], " ©"],
ScientificForm[Tk0/TCOBE - 1, NumberSigns -> {"-", "+"}1},
{"rl",ScientificForm[rl,16],"n.a.","unusual"},
"r0",ScientificForm[r0,16],ScientificForm[r0SI,16],
ScientificForm[r0/r0SI-1,NumberSigns->{"-","+"}]},
{"re",ScientificForm[re,16],ScientificForm[reSI,16],
ScientificForm[re/reSI-1,NumberSigns->{"-","+"}]},

{"\barC" ,ScientificForm[/\barC,16],ScientificForm[NbarCSI,16],
ScientificForm[/)\barC/)\barCSI-1,NumberSigns->{"-","+"}]1},

{"N\C",ScientificForm[/\C,16],ScientificForm[NACSI,16],
ScientificForm[AC/N\CSI-1,NumberSigns->{"-","+"}]},
"a0",ScientificForm[a0,16],ScientificForm[a0SI, 6 16],
ScientificForm[a0/a0SI-1,NumberSigns->{"-","+"}]},

{"R [m]",ScientificForm[R,16],"n.a.","at issue"},

{"R [Gpc]" ,ScientificForm[RR,16],"n.a.","at issue"},

{"2t1l" ,ScientificForm[2t1l,16],"n.a.","unusual"},

{"2t0" ,NumberForm[2t0,16] ,NumberForm[2t0SI,16],
ScientificForm[t0/t0SI-1,NumberSigns->{"-","+"}]},

{"2T [s]",ScientificForm[1/HO0,16] ,ScientificForm[Mpc/HPC[QCB]/km,16],
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ScientificForm[HPC[QCB] /Mpc*km/HO-1,NumberSigns->{"-","+"}]},
{"2T [a]",ScientificForm[1/HO0/year,16] ,ScientificForm[Mpc/HPC[QCB] /km/year,16],
ScientificForm[HPC[QCB] /Mpc*km/HO-1, NumberSigns->{"-","+"}1},
{"R~" ,ScientificForm[R»,16],ScientificForm[R~SI,16],
ScientificForm[R~/R~SI-1,NumberSigns->{"-","+"}1]1},

{"Oml" ,ScientificForm[Oml,16],"n.a.","unusual"},

{"Om0" ,ScientificForm[Om0,16],ScientificForm[c/r0SI,16],
ScientificForm[Om0*2*t0SI-1,NumberSigns->{"-","+"}1},

{"OmR>" ,ScientificForm[OmR~,16] ,ScientificForm[OmR=~SI, 16],
ScientificForm[OmR~/OmR»SI-1,NumberSigns->{"-","+"}1},

{"cR~" ,ScientificForm[cR~,16],ScientificForm[cR~SI,16],
ScientificForm[cR~/cR~SI-1,NumberSigns->{"-","+"}]1},

{"HO [1/s]",ScientificForm[H0,16],ScientificForm[HPC[QCB]/Mpc*km,616],
ScientificForm[HO/ (HPC[QCB] /Mpc*km) -1 ,NumberSigns->{"-","+"}1},
{"km/s/Mpc]" ,NumberForm[HPC[Q0],16],ToString[ NumberForm[HPC[QCB],16]]<> " ©",
ScientificForm[HPC[QO0]/HPC[QCB] -1,NumberSigns->{"-",
"+"}1},{"ql",ScientificForm[ql,16],"n.a.","unusual"},
{"q0",ScientificForm[q0,16],ScientificForm[q0SI,16],
ScientificForm[q0/g0SI-1,NumberSigns->{"-",

"+"}1},{"ge" ,ScientificForm[ge,16] ,ScientificForm[qeSI,16],
ScientificForm[ge/qgeSI-1,NumberSigns->{"-",

"+"}1},{"U1l" ,ScientificForm[Ul,16],"n.a.","unusual"},
{"U0",ScientificForm[U0,16],ScientificForm[U0SI,6 16],
ScientificForm[U0/U0SI-1,NumberSigns->{"-",
"+"}1},{"W1l",ScientificForm[Wl,16],"n.a.","unusual"},

{"WO0" ,ScientificForm[W0,16],ScientificForm[W0SI,616],
ScientificForm[WO0/WOSI-1,NumberSigns->{"-",
"+"}1},{"S1",ScientificForm[S1,16],"n.a.", "unusual"},
{"S0",ScientificForm[S0,16],"n.a.","unusual"},
{"oe",ScientificForm[oce,16],ScientificForm[ceSI,16],
ScientificForm[ce/ceSI-1,NumberSigns->{"-","+"}1},
{"ae",ScientificForm[ae,16],ScientificForm[aeSI,f16],
ScientificForm[ae/aeSI-1,NumberSigns->{"-","+"}]},
{"ge",ScientificForm[ge,16],ScientificForm[geSI,f16],
ScientificForm[ge/geSI-1,NumberSigns->{"-","+"}]},
{"vye",ScientificForm[ye,16],ScientificForm[yeSI,16],
ScientificForm[ye/yeSI-1,NumberSigns->{"-","+"}1},
{"pe",ScientificForm[pe,16],ScientificForm[peSI,16],
ScientificForm[pe/peSI-1,NumberSigns->{"-",

"+"}1},{"pB" ,ScientificForm[pB,16] ,ScientificForm[pBSI,16],
ScientificForm[pB/pBSI-1,NumberSigns->{"-","+"}]},
{"pN",ScientificForm[puN,16] ,ScientificForm[pNSI,16],
ScientificForm[pN/pNSI-1,NumberSigns->{"-","+"}1},
{"®0",ScientificForm[$0,16],ScientificForm[$0SI,16],
ScientificForm[$#0/$0SI-1,NumberSigns->{"-","+"}1},

{"GQO" ,ScientificForm[GQ0,16],ScientificForm[GQOSI,616],
ScientificForm[GQ0/GQOSI-1,NumberSigns->{"-","+"}]},
{"KJ",ScientificForm[KJ,16] ,ScientificForm[KJSI,16],
ScientificForm[KJ/KJSI-1,NumberSigns->{"-","+"}1},
{"RK",ScientificForm[RK,16],ScientificForm[RKSI,f16],
ScientificForm[RK/RKSI-1,NumberSigns->{"-","+"}1},

{"a" ,ScientificForm[alpha,1l6],ScientificForm[alphaSI,b16],
ScientificForm[alpha/alphaSI-1,NumberSigns->{"-",

"+"}1},{"®" ,ScientificForm[delta,16] ,ScientificForm[deltaSI,16],
ScientificForm[delta/deltaSI-1,NumberSigns->{"-",
"+"}1},{"x~",ScientificForm[xtilde,16] ,ScientificForm[2.821439372",16],
"exactly"},{"o",ScientificForm[o,16] ,ScientificForm[oSI,16], "exactly"}}:;

Grid[Prepend[data, {"Value\r", "Calculated","SI\rCOBE ©","Ay\r"}],
Background->{None, {Lighter [Blend[{Blue,Green}], .8]}},Frame->All,Alignment->{Left}]

Figure 9
NO6=SetPrecision[Rk[2/3]/Rn[2/3],20];

Pl°t[RS[10Ay]r {y, -3, 3}1;
Show[{%,
GV[Logl0[0.656729], 0.996, 1.038],
GV[Logl0[1.90812], 1.032, 1.036],
GH[NO6, LoglO[.9*0.656729], 0.6],
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GH[1.0354, Logl0[.9*1.90812], 0.9]},
ImageSize -> Full, PlotLabel -> None,
LabelStyle -> {FontFamily -> "Chicago", 12, Black}]

Figure 11

Plot[QQ[107t9],{t9,-8,8}];
Show[%,GV[-0.182570,-0.05,1.0365],
GH[1,-8,8],GH[0,-8,8],
GH[0.494482,-8,8] ,GH[0.302904,-8,8],
PlotRange->{0,1.0365}, ImageSize->Full, PlotLabel->None,
LabelStyle->{FontFamily->"Chicago",12,Black} ,AxesOrigin->{0,0}]

Figure 12

Plot[{alphaF[10~t10]}, {tl10, -8, 8}] (* AlphaF *);

Show[%, GV[-0.18257004098843227, -0.008, 0.09],
GH[0.07957741926604499, -8, 8],
GH[0.007297363635890055, -8, 8],
GH[0.016905867990336505, -8, 8], ImageSize -> Full,

PlotLabel -> None,

LabelStyle -> {FontFamily -> "Chicago", 12, Black}]

Figure 13
Composed of two parts (alpha-' and delta)

Plot[{deltaF[ (10~ (t10)/t1l)~.5]}, {tl10, (LoglO[tl] - 16), (LoglO[tl] + 16)},
ImageSize -> Full, PlotLabel -> None,
LabelStyle -> {FontFamily -> "Chicago", 12, Black},
AxesOrigin -> {(LoglO[tl] - 16), 1}]
Plot[{1/alphaF[10”~t10]}, {t10, -8, 8},
ImageSize -> Full, PlotLabel -> None,
LabelStyle -> {FontFamily -> "Chicago", 12, Black},
AxesOrigin -> {8, 0}1];
Show[%, GV[-0.18257004098843227, -8, 145], GV[0O, -8, 145],
GH[12.56637887007592, -8, 8],
GH[137.0357912660098, -8, 8],
GH[59.15105929915021, -8, 8]]

Figure 14

Plot[{

Logl0[M2] (*M2%*) ,

LoglO[hbl/c/rl/(107t10)] (*M1*),

LoglO[hbl/c/rl/(107t10)*2 (*m0*)],

LoglO[1l/ (9Pi”*2Sqrt[2] *delta/M2* (107t10)~(7/3))] (*me¥*),

LoglO[hbl/c/rl/(107t10) A3 (*mH*) ]
},{t10,Logl0[Q0]-70,Logl0[Q0]1+2}];
Show[{%,

GV[N[-12/2],-52,152],

GV[N[-2/3],-52,152],

GV[0,-52,152],

GV[LoglO[QO0],-52,152],

GH[Logl0[M1] ,Logl0[Q0]-70,Logl0[Q0]+2],

GH[Logl10[m0] ,Logl0[Q0]-70,Logl0[Q0]+2],

GH[Logl0 [me] ,Logl0[Q0]-70,Logl0[Q0]1+2]},
ImageSize->Full,PlotLabel->None, PlotRange->{-42,142},
LabelStyle->{FontFamily->"Chicago",12,Black}]

Figure 15

Plot[{
LoglO0[M2] (*M2%*) ,
LoglO[hbl/c/rl/(107t10)] (*M1*),
LoglO[hbl/c/rl/(107t10)~2 (*m0*)],
LoglO[1/(9 Pi*2 Sqrt[2]*deltaF[10~t10]/M2* (10~t10)*(7/3)) 1 (*me(Q)*),
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LoglO[1/(9 Pi*2 Sqgrt[2]*delta/M2*(10”~t10)*(7/3))] (*me*),
LoglO[hbl/c/rl/(107t10)~3 (*mH*) ]
}, {t1l0, LoglO[QO0] - 63.3, LoglO[QO0] - 57.3}1;
Show[{%, GV[-0.86836, -50, 150],
Gv[-1.55339, -50, 150], Gv[0O, -50, 150],
GV[-6.21358, -50, 150], GV[LoglO[2/3], -50, 150],
GH[Logl0[1.118124*107115], LoglO[Q0] - 63.3, LoglO[QO0] - 57.3]},
ImageSize -> Full, PlotLabel -> None,
LabelStyle -> {FontFamily -> "Chicago", 12, Black}]

Figure 16

ul

UeV[vQO[1]]

u2 = UeV[vQ0[1073]]
u3 = UeV[vQO0[QQrelU[Ml c*2/qge]]]
u4d = Ul

QQrelU[Ul] " Q(U1)"

QQrelU[UO0] " Q(UO)"

Ml*c*2 "Maximum Mlc2"

UO*ge "UO*ge energy"

Ul*ge "Ul*ge energy"

Ml c*2/Ul/qge "Enough for 11 electrons only"

11 = LoglO[ul] (*Q=1%*) ;

12 = Logl0[u2] (*Q=103%*) ;

13 = Logl0[u3] (*Maximum Mlc2=2.44470*10%%*) ;
14 = LoglO[u4] (*Maximum voltage Ul¥*) ;

Plot[QQrelU[10~t9], {t9, 87, 110}];
Show[({$%,
GvV[11l, -50, 2000],
GV[12, -50, 2000],
GV[13, -50, 2000],
GvV[14, -50, 2000]},
ImageSize -> Full, PlotRange -> {0, 1001}, PlotLabel -> None,
LabelStyle -> {FontFamily -> "Chicago", 12, Black}]

Figure 17
FindMaximum[QQ[QQrelU[10~t11]], {tl1l, 87, 110}]

Plot[{QQ[QQrelU[107t11]]}, {tll1l, 87, 110}];
Show[{%,
Gv[l1l, -0.08, 1.08], GV[l12, -0.08, 1.08],
Gv[13, -0.08, 1.08], GV[14, -0.08, 1.08],
GH[1, 87, 110], GH[0.460918, 87, 110],
GH[0.302904, 87, 110], GH[O, 87, 110]},
PlotRange -> {0, 1.0365}, ImageSize -> Full, PlotLabel -> None,
LabelStyle -> {FontFamily -> "Chicago", 12, Black}]

Figure 18

Plot[{1/4/Pi* (QQ[QQrelU[107~t10]])~2},{t1l0,87,110}] (* Alpha *);
Show[{%,
Gv[11,-0.04,0.085],GV[12,-0.04,0.085],
GvV[13,-0.04,0.085],GV[14,-0.04,0.085],
GH[0.07957741926604,87,110] ,GH[0.007297363635890,87,110],
GH[0.016905867990336,87,110]},
ImageSize->Full,PlotLabel->None,
LabelStyle->{FontFamily->"Chicago",12,Black}]

Figure 20c

cc = 7.519884824; (*Sqrt[n]] exact §*)
Plot[{10 Logl0[s2[10%y]],
10 (LoglO[s1[10”y]] + LoglO[E]*Psi2[10%y]) + 10 LoglO[gdc[10%y]],
Xlinely, Logl0[2]]}, {y, -3, 3}, PlotRange -> {-51, 4.5},
ImageSize -> Full,
LabelStyle -> {FontFamily -> "Chicago", 10, Black}]
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