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Abstract

Quantum Rayleigh scattering of single photons rules out coincident detections of the originally entan-
gled, paired photons Correlations between independent states of qubits can easily outperform those 
calculated with entangled photons. The quantum joint probability for a Bell state can be factor-
ized enabling a local detection of the alleged quantum nonlocality, if it existed.  © The Author 2024
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Introduction
Recent background briefing articles [1-2] reveal significant difficulties in the implementation of practical 
quantum computers based on the concepts of entangled states and quantum nonlocality-related correlations 
of detected single photons despite heavy resources having been invested in the last two decades. This is not 
surprising given the omissions of quantum physical processes and physical contradictions that have been al-
lowed to persist in the professional literature of leading journals.

In a recent review article [3], a range of statements (Sx) can be found:
S1: “Entanglement, a unique quantum mechanical phenomenon, has become a valuable resource without any 
classical equivalent. The nonlocal and strong correlations present in entangled objects are the backbone of 
various QIT protocols. Photonic entanglement can now be routinely generated, processed, and measured in 
quantum optics platforms in laboratory settings.” [3; p. 62].
S2: “Entanglement is a quantum-mechanical property, with no classical description, shared by two or multiple 
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objects. Entanglement gives rise to a stronger-than-classical nonlocal correlation, which can serve as a power-
ful resource for achieving capabilities that surpass the limitations of classical physics. “ [3; p. 63]

S3: “However, it was not until 1964 when Bell translated the mostly philosophical discussion into a setting 
where experiments could show a clear difference between classical correlations and their quantum counter-
parts [46], that the testing of the counter-intuitive behavior of entangled systems incentivized experimental-
ists.” [3; p. 65]

S4: “Moving into the 21st century, with pivotal technological advances in entangled-photon sources [56–58] 
and single-photon detectors [59], tests of Bell’s inequalities culminated in a series of unambiguous loop-
hole-free experiments [60–63].“  [3; p. 65]

S5 “One well-developed approach for generating optical entanglement is through nonlinear optical processes 
invoking frequency conversions. Here, the most prominent one is the three-wave mixing process of spontane-
ous parametric downconversion (SPDC) leading to the generation of photon pairs. “ [3; p. 66]

These statements of fundamental aspects of quantum information have been chosen to be proven incorrect 
from a physical perspective. We begin by listing and referencing in Section 2 elements and aspects of quantum 
optics which have been either ignored or misinterpreted. Section 3 outlines the shortcomings of Bell inequal-
ities by pointing out that they refer to maximal values of joint probabilities and that quantum correlations do 
not, in fact, violate these Bell inequalities. The quantum correlation of independent qubits is evaluated in Sec-
tion 4, while Section 5 reveals the factorization of the quantum correlation of entangled photons by following 
the concept of wave function collapse after a first measurement. It is found that independent qubits generate 
stronger correlations between the polarization state vectors on the Poincaré sphere than entangled qubits. 
Physical aspects are presents in Section 6.

Rebuttal Elements 
Many physical aspects and processes have been omitted from the theory of Quantum Optics for reasons of ex-
pediency. Some of these missing elements are listed in this Section and numbered for future reference as Rx.

•	 Published experimental results in other journals than Physical Review Letters, have reported quan-
tum-strong correlations with independent photons [4-5] based on polarization measurements. These results 
are consistent with the expansion of the Pauli vector correlation operator [6; p. 422]  
leading to an identity operator multiplied by the correlation function, i.e., the operator  can be can re-
duced to [7; Eq. (A6)]:

                                                                           (1)

where the linear polarization unit vectors a and b  identify the orientations of the detecting polarization      
filters in the Stokes representation, and   is the Pauli spin vector  The
presence of the identity operator in Eq. (1) implies that, when the last term vanishes for a linear polariza-
tion  state, the correlation function is determined by the orientations of the polarization filters, for any type 
of quantum state, even non-entangled ones [8]. This physical aspect should have been known for the last 
six  decades and should have saved a great deal of misguided research.	

•	 A single photon is deflected from a straight-line propagation in a dielectric medium by the quantum Ray-
leigh scattering [9]. Groups of identical photons can propagate in a straight-line through stimulated Ray-
leigh emission [10-11]. The spontaneously emitted photons in the nonlinear crystal undergo parametric 
amplification forming a group of identical photons. This group of photons can overcome the quantum 
Rayleigh scattering through quantum Rayleigh stimulated emission (QRStE) [10-11].  The effect of QRStE 
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•	 For maximal values of unity, the Bell parameter S=〈a0  b0 〉+〈a0  b1 〉+〈a1  b0 〉-〈a1  b1 〉  of eq. (4) in ref. [6] 
would actually vanish as 〈a1  b1 〉=〈a0  b0 〉=-1 and 〈a1  b0 〉=〈a0  b1 〉=0 according to the expectation values 
[6, p. 422] , for detection settings  , and x of the polarization 
states for coincident detections. Thus, S=0, failing to violate the Clauser-Horne-Shimony-Holt (CHSH) 
inequality despite involving the strongest quantum correlations.  This fact should have rung alarm bells 
about the irrelevance of the Bell-type inequalities as an indicator of strong correlations between the same 
order elements of two sequences.

Similarly, as explained in Section 3, the Clauser-Horne (CH) inequality cannot be violated with maximal 
values of correlations, which fact further disproves the statement that conditional on the property of device 
independence, “the violation of Bell inequalities can be seen as a detector of entanglement that is robust to any 
experimental imperfection: as long as a violation is observed, we have the guarantee, independently of any im-
plementation details, that the two systems are entangled.”[6, p. 423]  In fact, only correlation values of around 
0.7,  with sign adjustments, violate Bell inequalities, which is identical to the case of ‘classical’ correlations.

•	 A sub-section of ref. [6] headlined “More nonlocality with less entanglement” leads one to the anomaly of 
nonlocality. “Astonishingly, it turns out that in certain cases, and depending on which measure of nonlo-
cality is adopted, less entanglement can lead to more nonlocality.” [6, p. 442].  “Remarkably, it turns out 
that this threshold efficiency can be lowered by considering partially entangled states. This astonishing 
result was the first demonstration that sometimes less entanglement leads to more nonlocality “ [6, p. 464]. 
This is not surprising because Bell inequalities cannot be violated with maximal correlation values of 
unity, whether classical or quantum, as explained in the rebuttal point R3. The analysis of quantum corre-
lations for independent photonic qubits is outlined in Section 4.

•	 The 2015 landmark experiments [12-13] reported a very low probability of coincident detections of a mere 
0.0002 (2x10--4) with one setting at each of the two stations, the overall outcomes being fitted with highly 
non-entangled states of photons, thereby disproving any claim of quantum nonlocality despite the common 
view [14]. The effect of quantum nonlocality is meant to synchronize the detections recorded at the two 
locations A and B for polarization-entangled states of photons. In the caption to Fig.1 of [14], on its second 
page, one reads: “…if both polarizers area aligned along the same direction (a=b), then the results of A 
and B will be either (+1; +1) or (-1; -1) but never (+1; -1) or (-1; +1.); this is a total correlation as can be 
determined by measuring the four rates with the fourfold detection circuit.” Yet, the quantum correlation is 
supposed to take place at the level of each pair of entangled photons rather than between averaged values 
of the two distributions; but such an outcome has never been reported, which fact was ignored in ref. [14].

•	 From an experimental perspective, the correlation probability of simultaneous detections pc (a,b)  is eval-
uated from a third sequential distribution vC (a;b) calculated as the temporal vector or dot product of the 
two initial, separately measured, sequences v(a,x) ={am} and v(b,y) ={bm} leading to  pc (a,b)=(∑N

m=1)
am   bm )/N  where a,b=0 or 1 are assigned binary values for no-detection or detection of an event, respec-
tively.  For any ensemble of measurements, the values of the correlation or conditional joint probability  pc 
(a,b) will depend on the sequential orders of the two separate ensembles at locations A and B. Therefore, 
as the quantum formalism does not provide any information about those sequential orders, any artificial 
boundary such as Bell-inequalities are physically meaningless, because for the same values of the local 
probabilities, pA (a)  and  pB ( b), the higher values of  pc (a,b) will lead to a violation of the Bell inequal-
ity in the classical regime. Bell inequalities can be easily violated with independent photons [4-5], [8].

plays a critical role in creating groups of identical photons in a commonly used dielectric beam splitter as 
explained in ref. [11].  This physical aspect should have been known for the last four decades and should 
have saved a great deal of misguided research.
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See Section 3 below for further details undermining the physical significance of Bell inequalities. 

•	 A complete derivation based on the collapse of a Bell state leads to the factorization of the joint probability 
of detections, with the second local probability being a function of the relative angle between the linear 
polarization filters. This is presented in Section 5 for the case of one-setting detection of each of two de-
tectors.  

•	 Following the results of [10] that identified dynamic and coherent number states |Ψn (ω,t)⟩=(|n(t)⟩ 
+ |n(t)-1⟩  )/√2 and recalling the non-Hermicity of the field operators, we find that â |n ⟩=√n e-i φ) 
|n-1 ⟩, which provides a complex field amplitude [10], for the time-dependent evolutions of pho-
tonic beam fronts. By means of Ehrenfest’s theorem – describing the evolution of the expecta-
tion value of the photonic field– the phase-d ependent parametric gain or coupling between two 
optical beams can be calculated [10-11]. Additionally, the quantum regime operations of vari-
ous types of beam splitters are analysed in the context of quantum Rayleigh emissions [10-11]. 

•	 The spatial profile of the intrinsic field of a photon is derived by combining the Maxwell equations and 
the expectation value of the field operator calculated with the dynamic and coherent number states [10].  
The combination of the spatial, longitudinal profile with the random phase of the amplified spontaneously 
emitted photons provides a physically meaningful explanation for the Hong-Ou-Mandel (HOM) dip of the 
vanishing coincident count of photons [10].

The first two rebuttal aspects R1 and R2 of this Section disprove and dispel the unique features of entangled 
photons as presented in statements S1 and S2 of the Introduction. The rebuttal aspects R3 and R4 disprove and 
dispel the unique features of Bell inequalities as presented in statements S3 and S4.  The rebuttal aspects R5, 
R6 and R7 disprove and dispel the entanglement-based interpretations of the experimental results as presented 
in statements S4 and S5.

Additional analytic developments will be outlined in the next Sections presenting physically meaningful pro-
cesses and interactions that undermine the concept of quantum nonlocality. 

Shortcomings of Bell Inequalities
As pointed out in ref. [6], in typical experiments of correlated outputs, the results of the joint probability 
p(a,b│x,y) of simultaneous or synchronized detections of two sequential ensembles of binary values, do not 
equal the product of the two separate probabilities of detection  p(a│x)  and  p(b│y) at locations A and B for 
outcome a and b corresponding to local settings x and y, respectively, that is:

           p(a,b│x,y)≠ p(a│x)  p(b│y)                                                                                          (2)

where a,b=0 or 1 are assigned binary values for no-detection or detection of an event, respectively.

In an attempt to explain experimental outcomes obtained with quantum events, it was suggested to convert eq.  
(2) into an equality of local probabilities [6]:

            pf (a,b│x,y;λ)= p(a│x;λ)  p(b│y;λ)                                                                         (3)

by introducing a “hidden” variable λ whose role would be to create a correlation between the two binary-val-
ued sequences with randomly distributed terms of ‘0’s and ‘1’s, for probabilities of detection  p(a│x;λ)  and  
p(b│y;λ). However, from a physically experimental perspective, the correlation of simultaneous detections is 
evaluated from a third sequential distribution vC (a;b) calculated as the vector or dot product of the two initial
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by introducing a “hidden” variable λ whose role would be to create a correlation between the two binary-val-
ued sequences with randomly distributed terms of ‘0’s and ‘1’s, for probabilities of detection  p(a│x;λ)  and  
p(b│y;λ). However, from a physically experimental perspective, the correlation of simultaneous detections is 
evaluated from a third sequential distribution vC (a;b) calculated as the vector or dot product of the two initial 
sequences v(a,x) ={am} and v(b,y) ={bm} : 

                                              (4)

with the values of the correlation or joint probability  pc(a,b│x,y;λ) ranging above and below the product  
p(a│x;λ)  p(b│y;λ). For pc(a,b│x,y)> p(a│x)  p(b│y) the arbitrary upper limit of eq. (3) renders any further 
derivation physically irrelevant as it is intentionally limited in value. However, Clauser and Horne, instead of 
correcting this mistake, derived two Bell-type inequalities [6], [12-13] in the form of functions of probabilities 
pf (a,b│x,y)=∫Λ

▒q(λ)  p(a,b│x,y;λ)  dλ, with  q(λ) being the normalized distribution of hidden variables. Those 
inequalities can be easily violated with classical probabilities  pc (a,b│x,y) of eq. (4) which can be larger than 
the product of the separate probabilities [4-5]. Later on, neither Aspect, nor Zeilinger noticed the statistical 
problem of eq. (3), with the landmark experiments of [12] and [13] employing strongly non-entangled photons 
to violate the Clauser-Horne inequality. The contradictions between theory and experimental results rules out 
any quantum effect of nonlocality as detailed in the next paragraph.

The quantum correlation function Ec (1;1|α;β) for detecting one photon at location A and its pair-photon at 
location B, is defined in terms of four probabilities between two orthonormal detection-settings at each of the 
two locations A and B, for eigenvalues  +1 or-1, respectively, of local settings α or α' , and  β or β' leading to 
the linear combination of probabilities Pij [15-16]:

            Ec(1;1|α;β)=P++(α;β)+ P-- (α';β')-P+- (α;β')-P-+ (α';β)                           (5)

where α^'=α+π/2 and β^'=β+π/2 . Fluctuations in the number of detections would give rise to a spread 
in the values of Pij and  Ec (1;1|α;β). This correlation function is normally linked to the polarimetric Stokes 
measurements or the quantum Pauli vector operators and has the same form in both the quantum and classi-
cal regimes [8], so that its use in the Clauser-Horne-Shimony-Holt (CHSH) inequality cannot discriminate 
between quantum and classical outcomes; the quantum counting is sequential whereas the classical counting 
consists of only one sampling step.  
For the CHSH inequality [15-16], the correlation probability is P++ (α;β)=N++ (α;β)/ Nnorm where N++ is the 
number of coincident counts of photons and  Nnorm is the number of all coincident detections for all four set-
tings Nnorm=N++ (α;β)+ N-- (α';β')+N+- (α;β')+N-+ (α';β). However, this normalization is mathematical because 
the physical number N_norm=N_in of initiated photon-pairs is very much larger as photons are lost between 
the source and the photodetectors, for various reasons, thereby throwing doubt about the real statistics. This 
normalization makes a violation of the CHSC impossible as  N++/Nin≪0.1 [12-13].
The Clauser-Horne (CH) inequality has arbitrary values for the two measurement settings, i.e., α and 
α^' as well as  β and β^'  are set separately. The CH inequality also contains correlations between ‘1’s 
and ‘0’s, so that, in terms of binary-valued probabilities  p (1,1;α,β) and similar forms, [12-13], the ine-
quality is written as:

                     p (1,1;α,β)- p (1,1;α',β')≤ p (1,0;α,β' )+p (0,1;α',β)                                     (6)

with the normalization factor N_in of initiated events being used. But, as only one term of the four terms 
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is measured in any given run, the linear combination would relate the maximal values on the left-hand
side to the minimal values on the right-hand side. With such probabilities for all four terms, the opposite 
requirements of the inequality for the coincident detections of (1;1) on the left-hand side, and for only one-lo-
cation detection (1;0) or (0;1) on the right-hand side, make a violation impossible, mathematically, unless ar-
bitrary values are selected from various data sets. In this case, the inequality becomes physically meaningless. 
For a maximal value of unity for p (1,1;α,β)=1, in order to minimize the right-hand side of eq. (6), the value 
of p(1,1;α',β' ) should also be unity, which leads to a zero difference on the left-hand side.

Stronger Quantum Correlations with Independent Qubits
Quantum correlations are evaluated as the expectation values of a product of operators [6], [15]. For the pro-
jective operators  Π̂(α)=|Hα ⟩ ⟨Hα |  and Π̂(β)=|Hβ ⟩ ⟨Hβ|  corresponding to the polarization filters with one 
detection setting at each of the two locations A and B, respectively, the probability of coincident detections 
has the form, cf. [6, eq. 13]:

                                                                  (7)

with |Hα ⟩ and |Hβ ⟩  identifying the states of the polarization filters, and ⟨Φα |=⟨ψin |Π ̂(α) for the Hermitian 
conjugate state.  For the polarization-entangled photons, the outcomes consist of the overlap between two 
state vectors rotated on the Poincaré sphere and are defined as the correlation function C(α;β) between two 
(mixed) states; by contrast, experimentally, the probability of coincident detections is calculated from the sum  
of products of overlapping terms, i.e., pc (a,b)=(∑N

m =1ambm )/N , as defined in Section 3, and identifies the 
fraction of simultaneous detections at the level of each quantum event. This discrepancy is part of the 
disconnect between theory and measurement.

For the basis states |H⟩  and |V⟩ of the shared measurement Hilbert space, the projective amplitudes are 
⟨Hα | HA ⟩=cos α, ⟨Hα|├ VA ⟩=sin α,  ⟨Hβ| HB ⟩=cos β and  ⟨Hβ|VB ⟩=sin β. the correlation function C(α;β) 
of magnitude |C(α;β)|= p (1,1;α,β) between filter polarization states and for independent states of photons 
|ψ_in ⟩ becomes:

               C(α;β)=⟨Φα | Φβ ⟩=⟨ψin |Hα ⟩  ⟨Hα |Hβ ⟩⟨Hβ | ψin ⟩                                                        (8a)

               |ψin ⟩=( |H⟩  + |V⟩ )/ √2                                                                                                    (8b)

               |Hα ⟩=cos α | H⟩  +sin α  |V⟩    ;   |Hβ ⟩=cos β|H⟩  +sin β|V⟩                                    (8c)

               C(α;β)= 0.5[cos α+ sin α] [cos(α-β)] [cosβ+sinβ]=                                          
                                                              = 0.5 cos (α-β)[cos (α-β)+sin (α+β)]                           (8d)

This correlation of eq. (8d) is composed of three terms. The projections of the input states onto the respective 
filters are given by the sum of the sine and cosine functions, on the first line, while the term cos (α-β)   indi-
cates the overlap between the two filters in the Jones representation of polarization states. The magnitude of 
this correlation function or probability of coincident detections can reach a peak of unity for the symmetric 
case of  α=β=π/4 or π/4±π , outperforming the coincidence values of 0.5 obtained with entangled states of 
photons as presented in the following Section 5.

The Wave Function Collapse Leading to Fctorization of the Quantum Joint Probability 
A rigorous derivation based on the formalism of wave function collapse of a maximally entangled state will 
provide a method to test the concept of quantum nonlocality. If no detection takes place at location A, the
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projective measurement at location B involves the operator Π̂(β)=|Hβ ⟩  ⟨Hβ |  acting on the initial state 
                           |ψAB ⟩=( |HA ⟩|VB ⟩- |VA ⟩ | HB ⟩)/√2                                                                                 (9) 

and resulting in the probability of detection 

                              Pβ=⟨ψAB |ÎA⨂|Hβ ⟩  ⟨Hβ |⨂ ÎA  | ψAB ⟩=(cos2 β+sin2 β)/2=1/2                        (10)

after setting ⟨Hβ |HB ⟩=cosβ and ⟨Hβ |VB ⟩=sinβ for the projective amplitudes onto the polarization filter. Sim-
ilarly, for the first detection at location A, i.e., Pα=1/2 .
If a first detection takes place at location A involving the projective operator Π̂(α)=|Hα ⟩  ⟨Hα |, it will result in 
an intermediary state for the projective amplitudes ⟨Hα |HA ⟩=cos α and  ⟨H α |VA ⟩=sin α , so that the reduced 
or collapsed wave function |ψB|A⟩ becomes:

                             |ψB|A ⟩=|Hα ⟩  ⟨Hα |⨂ ÎB |ψAB ⟩  =1/√2  (cos α  |VB ⟩-sin α  |HB ⟩)|Hα ⟩                   (11)
                                                                                                                                                                            

                                                                                        (12)

where |ψB ⟩ denotes the normalised wave function for the calculation of the detection probability at location 
B, conditional on a detection at location A. The normalization factor N=1/2 for the collapsed wave function 
|ψB|A⟩ corresponds to the probability of detection Pα for the first measurement, and after substituting for 
|ψB ⟩ from eq. (12) we have:

                           Pα=⟨ψAB |ÎB ⨂|Hα ⟩⟨Hα |⨂ ÎB | ψAB ⟩=|⟨Hα|ψAB ⟩|2=N ⟨ψB | ψB ⟩=1/2                (13)

Based on the normalized state | ψB ⟩, the probability of detection at location B following a detection at location 
A, becomes in this case, for a projective measurement:

                            Pβ|α=⟨ψB |Hβ ⟩  ⟨Hβ | ψB ⟩=|cos α   sin β - sin α  cos β|2 =sin2 (β-α)                (14)

This result which can be found in [15, Sec.19.5] implies that for β-α=±π/2, regardless of the values of  β or 
α , the local probability of detection could peak at unity. This theoretical outcome is easily testable experi-
mentally for direct evidence of a quantum nonlocal effect influencing the second measurement after the wave 
function collapse. But this has never been done either because of the quantum Rayleigh scattering [9] of a 
single-photon and/or the non-existence of such a nonlocal effect.  The product of the local probabilities of eqs. 
(13) and (14) equals the expression of the joint probability P_αβ for simultaneous detections at both locations 
A and B, that is:

after inserting from Eqs. (12) and (14) in the equality (15a). The equality (15b) provides a direct calculation 
of the joint probability, confirming the validity of the derivation.  With the conditional probability of local 
detection Pβ|α being, mathematically, lower than, or at best, equal to  the local probability of detection Pβ in the 
absence of a first detection, i.e., Pβ|α≤Pβ, the formalism of wave function collapse gives rise to a factorization of
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local probabilities and imposes an upper bound on the quantum joint probability, in clear contradiction to the 
conventional assumption [15, p.538]. This formalism delivers average values of the ensembles rather than 
correlation between the sequential orders of the detections. The possibility of factorizing the quantum prob-
ability for joint events as in (15a) is identical to the classical case of joint probabilities with the second local 
probability being conditioned on a first detection. This strong similarity between the classical and quantum 
joint probabilities renders the local condition of separability [6], [15] irrelevant for the derivation of Bell in-
equalities. 

The Flaws of the Quantum Nonlocality Interpretation of Experiments
For the two polarized photons shown in the inset to Fig. 1 of [14] “quantum mechanics predicts that the polar-
ization measurements performed at the two distant stations will be strongly correlated.” Yet, quantum-strong 
correlations can also be achieved with independent photons or classical systems [4-5], [8]. 

Another quotation of interest from [14] is: “In what are now known as Bell’s inequalities, he showed that, for 
any local realist formalism, there exist limits on the predicted correlations.” Once again, as pointed out above, 
Bell inequalities can be violated with expectation values from independent and multi-photon states [4-5], [8], 
but cannot be violated with maximal values of unity correlation, contradicting their purpose.

At least three critical elements have been ignored in the interpretations of experimental results alleging proof 
of quantum nonlocality: 1) the quantum Rayleigh scattering involving photon-dipole interactions in a dielec-
tric medium [10-11], which prevents a single photon from propagating in a straight-line, thereby obstructing 
the synchronized detections of initially paired-photons; 2) the unavoidable parametric amplification of the 
spontaneously emitted photons in the nonlinear crystal of the original source [10-11]; and 3) the experimental 
evidence of quantum-strong correlations between polarization states or statistical ensembles of multi-photon, 
independent states [4-5].     

The theoretical concept of photonic quantum nonlocality cannot be implemented physically because of the 
quantum Rayleigh scattering of single photons [9]. Landmark experiments [12-13] reported that measured 
outcomes were fitted with quantum states possessing a dominant component of non-entangled photons, there-
by contradicting their own claim of quantum nonlocality. With probabilities of joint detections lower than 
0.001, the alleged quantum nonlocality cannot be classified as a resource for developing quantum computing 
devices [1-2], despite recent publicity. 

All the experimental evidence indicates the absence of a quantum effect between two simultaneously meas-
ured single and entangled photons because of the quantum Rayleigh scattering of single photons. The theo-
retical quantum joint probability for entangled photons is limited by an upper value of 0.5, whereas the corre-
lation between independent qubits on the Poincaré sphere can exceed 0.5 as shown in Section 4. Equally, the 
classical correlation coefficient between two sequences of arbitrarily distributed binary values can be larger 
than 0.5, calculated as the sum of same order, overlapping, product components of '1' or '0' as explained in 
Section 3.  
The quantum reality of independent states of photons takes precedence over the quantum nonlocality of sta-
tistically mixed quantum states by delivering stronger quantum correlations as explained in Section 4. The 
mixed states are time- and space independent and can be used at anytime, anywhere and in any context regard-
less of the physical context and circumstances. Thus, discarding critically informative aspects of the photonic 
systems being probed leads to the need for ‘counter-intuitive’ explanations such as the quantum nonlocality 
phenomenon which would be based on the concept of wave function collapse, leading to the factorization of 
the joint probability of simultaneous detections which would be testable locally. Once again, no experimental 
evidence of these features has been reported.
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Consequently, the physical reality as promoted by Einstein prevails over the mythical quantum nonlocality of 
Bohr, if only because a single photon will be scattered about in a dielectric medium by the quantum Rayleigh 
scattering. 

Conclusions
A long series of physical errors, some of which stemming from disregard for scientific methodology, have 
been covered up over the last six decades. An arbitrarily defined probability threshold which, allegedly, can 
only be violated by quantum correlations was repeatedly proven to be physically incorrect. Experimental 
outcomes purporting to prove the role of polarization-entangled photons were, in fact, modelled with a high 
level of non-entangled states.  
No explanation is provided in ref. [3] about the physically meaningful process of Rayleigh scattering of single 
photons which prevents synchronized detections of the original pair of entangled photons.  The absence of 
such experimental evidence is consistent with the analysis based on the concept of wave function collapse 
leading to the factorization of the quantum joint probability. This, in turn, should enable a local determination 
of the alleged quantum nonlocality, which has never been reported. 

Therefore, Gisin’s statement [17] that “…a violation of a Bell inequality proves that no future theory can 
satisfy the locality condition” is physically unsubstantiated given the evidence to the contrary presented in 
Sections 2 , 3 and 4 above, and references [4-5].

Taking into consideration all the flaws and shortcomings of the theoretical claims and experimental outcomes, 
it is obvious to any impartial physicist that no evidence of a nonlocal quantum effect can be identified. The 
2022 Nobel Prize Committee intentionally disregarded the various rebuttals and refutations of the concept of 
quantum nonlocality in line with the editorial policy of journals such as Physical Review Letters and Phys-
ical Review A which knock back without consideration any well-substantiated article outlining the physical 
reality of Einstein.  
For further details see ref. [18].

Data Availability Statement: The physical analysis of this article is based on published measurement data as 
reported in the references listed below. This article provides physically meaningful interpretations of availa-
ble data but does not generate data of its own. 
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