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Abstract

Living organisms like plants, human beings, and microorganisms depend on pollution-free soil. Polluted soil 
has a great risk to the environment, especially agriculture, which provides livelihood to human beings. It also 
poses risks to the health of human beings all over the world. Tracking the source of soil contamination and 
determining the presence of contamination in soil best define environmental management and remediation. 
This systematic review identifies the application of machine learning (ML) algorithms in source identification 
and soil pollution categorization. Guided by the PRISMA (Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) methodology, this study blends peer-reviewed papers published in the past ten years 
across various databases such as IEEE Xplore, ScienceDirect, SpringerLink, and Scopus. The review includes 
outstanding machine learning algorithms such as Support Vector Machines (SVM), Random Forest (RF), De-
cision Trees (DT), k-Nearest Neighbors (k-NN), Neural Networks (NN), and ensemble methods, their efficacy, 
accuracy, required data, and interpretability. It also identifies the types of input data commonly employed 
(e.g., geospatial, physicochemical, remote sensing) and the most common feature engineering and model op-
timization methods. Trends suggest that there is a growing drift towards hybrid and deep learning approaches 
despite ongoing issues with model generalizability, data availability, and deployment in field conditions. The 
review is concluded by discussing current research gaps and suggesting future directions for robust, interpret-
able, and scalable ML-based soil pollution source detection systems.
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Introduction
Background and Significance of Pollution Source 
Detection
Soil health is a root component of environmental 
health, underpinning ecosystem resilience, agricul-
tural productivity, and human well-being. Healthy 
soils feed plant growth, regulate water cycles, and 
provide a vital filter for contaminants [1,2]. Human 
activities have greatly compromised soil integrity by 
various means of pollution. The primary sources of 
soil pollution are industrial effluent disposal, agri-
cultural sector runoff with chemicals and pesticides, 
the landfilling or dumping of waste in the open, and 
chemical or oil spills [3,4]. These contaminants bring 
with them toxic substances such as hydrocarbons, 
heavy metals, and persistent organic pollutants to in-
fuse into the soil matrix, rendering long-term harm 
to biodiversity, food safety, and human health [5,6].

Identifying the specific sources of polluted soil is 
crucial to effective environmental cleanup and the 
establishment of meaningful policy responses [7,8]. 
Source attribution enables stakeholders to employ 
appropriate mitigation strategies, prosecute contam-
inators, and prevent repeat contamination events. 
Further analytical source detection of pollution as-
sists in land-use planning and good resource man-
agement by allowing decision-makers to assess the 
source and spread of contaminants. Traditional soil 
sampling and laboratory analysis methods, as much 
as they are scientifically valid, possess some inherent 
shortcomings [9,10]. These traditional approaches 
are typically labor-consuming, time- consuming, and 
expensive, especially when applied to large-scale or 
distant regions. They typically provide discrete point 
data, which results in sparse spatial coverage and po-
tential exclusion of minor-scale pollution gradients. 
Their passive nature further results in delayed action, 
thus making them less appropriate for dynamic and 
large-scale environmental monitoring. As a result, 
there is a need for quicker, more anticipatory, and 
scalable detection techniques of soil pollution sourc-
es. In this regard, new technologies such as machine 
learning offer the potential for such alternatives to 
break free from the limitations of traditional ap-
proaches to enable quick, less expensive, and broad-
er analysis of the contamination pattern in the soil.

Role of Machine Learning in Environmental Mon-
itoring
Machine learning (ML), which is one of the constitu-
ent areas of artificial intelligence (AI), is now a rev-
olutionary approach to processing large and complex 
environmental data sets [11]. Using complex algo-
rithms that learn from patterns in data, ML supports 
model building for outcome predictions, pattern dis-
covery, and decision making without human interven-
tion or with minimal direct human intervention [12]. 
These characteristics make ML highly suited to ad-
dress environmental monitoring issues, wherein data 
is often big, heterogeneous, and dynamic. In the past 
several years, ML techniques have been utilized with 
tremendous success in a wide range of environmen-
tal applications. For instance, predictive models were 
developed for forecasting air quality levels in urban 
areas, anomaly detection in water quality parameters, 
and tracking changes in biodiversity from image and 
acoustic data analysis [13]. All these applications 
demonstrate that ML can process high-dimensional 
data efficiently, discover nonlinear patterns, and gen-
erate real-time insights that would be difficult to real-
ize using traditional analytical techniques.

When applied to soil contamination, ML boasts a 
number of advantages over conventional methods. 
Unlike laboratory analysis and ground sampling, ML 
models are capable of merging data from heterogene-
ous sources, including remotely sensed imagery, geo-
spatial data, and sensor networks, into source location 
models and pollution detection models [14]. This al-
lows for an integrated comprehension of spatial and 
temporal pollution patterns. Again, the ability of ML 
to automatically perform repetitive data analysis and 
provide actionable findings in near real-time enhanc-
es environmental management process response and 
cost-effectiveness. Through the utilization of ML ca-
pabilities applied on source identification of soil con-
tamination, researchers and practitioners can circum-
vent the limitations of traditional methods, enabling 
active, scalable, and data-intensive environmental 
surveillance systems.

Rationale for the Review
As soil pollution becomes increasingly prevalent with 
increased industrialization, urbanization, and unsus-
tainable agriculture, the need for accurate, efficient, 
and scalable methods of pollution source detection is
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growing. While traditional soil analysis techniques 
have provided valuable data, they are no longer suf-
ficient to meet the needs of modern environmental 
management— especially when prompt, spatially 
extensive, and data-driven interventions are neces-
sary. As a result, machine learning (ML) has become 
a desirable choice due to its promise of predictive 
modeling, automation, and pattern recognition in 
complex datasets [15].

While growing in quantity, research studies that ap-
ply ML to environmental applications are dispersed, 
and those specifically addressing source identifica-
tion of soil contamination are dispersed [16]. These 
studies often vary considerably regarding the type of 
data, model approach, algorithm applied, and perfor-
mance measures used. This variation in approaches 
renders comparison or generalization of opinions on 
best practices to apply ML methods in this applica-
tion challenging. A systematic review should then 
be conducted to integrate current research activity, 
compare the performance of various ML algorithms, 
and define areas of ignorance that should be filled. 
The review here aims to synthesize the most rele-
vant studies, criticize methodological approaches, 
and define the potential and limits of the use of ML 
for soil pollution source identification. In so doing, it 
presents a complete roadmap for researchers, practi-
tioners, and policymakers wishing to take advantage 
of artificial intelligence in sustainable environmental 
remediation and monitoring.

Research Questions or Review Objectives
To comprehensively explore source identification of 
soil contamination with machine learning (ML), this 
current review is guided by a set of well-articulated 
and answerable research questions. They were cre-
ated to define solid results, identify methodological 
patterns, and show literature gaps. The most obvious 
research questions guiding the current systematic re-
view are:

•	 What are the most common machine learning 
algorithms used in source identification of soil 
contamination? This demands the most com-
mon forms of ML models employed within this 
application and reasons for such frequency.

•	 Most common form of data used with ML 
models in source identification of soil contam-
ination and why so? Understanding of how 

•	 input data nature—i.e., geospatial, physico-
chemical, or remote sensing—is and preproc-
essing thereof for ML modeling. Knowledge of 
the nature of input data and how they are pre-
processed to fit into ML modeling will be re-
quired in order to ascertain model reliability and 
universality.

•	 How is the efficiency and effectiveness of these 
ML models established for use in source identi-
fication of soil pollution? This entails compar-
ison of techniques used to establish accuracy, 
stability, and interpretability, and benchmarking 
techniques used in research.

•	 What are current trends, issues, and future di-
rection of applying ML to detect the sources of 
soil pollution, with particular reference to inter-
pretability of models, alignment with emerging 
technologies, and policy matters? After placing 
ML in context with regard to where it is being 
placed, i.e., how it stacks up with regard to actu-
al need, existing policy, and future paths in data 
science and AI.

Collectively, the questions form the main objectives 
of the review, and in a combined and complete over-
view, how ML is transforming soil pollution observa-
tion and source apportionment.

Scope and Delimitations of the Review
This systematic review is specifically focused on ma-
chine learning (ML) algorithm applications towards 
source identification and soil contamination attribu-
tion. The review consists of peer- reviewed journal 
papers, conference papers, and technical reports pub-
lished predominantly during the past decade in order 
to identify recent advancements and future directions 
of research in the area. The review contains experi-
ments with supervised, unsupervised, and hybrid ML 
models with various environmental data sets ranging 
from geochemical, geospatial, remote sensing, and 
sensor data.

The attention of the review is specifically given to 
source identification rather than to measurement or es-
timation of overall soil quality or extent of pollution. 
While there may be some overlap, most emphasis 
has been placed upon those studies directly related to 
identification or classification of pollution sources-ur-
ban, agricultural, or industrial. Methodology, data 
preprocessing techniques, evaluation metrics, and 
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application of ML models to real-world scenarios are 
also addressed in the review.

But certain delimitations are noted. First, this review 
does not consider research based solely on tradition-
al statistical or deterministic models without any ma-
chine learning. Second, unpublished theses, grey lit-
erature, and those published in languages other than 
English are not included, so regional diversity may 
be restricted by not considering them. Third, while 
review attempts to measure model utility and prac-
titioner application, it is not able to conduct quanti-
tative meta- analysis due to study design, data sets, 
and appraisal heterogeneity. These stated limits fa-
cilitate accurate and uniform analysis that allows for 
effective synthesis and interpretation of results for 
researchers, environmental practitioners, and policy 
makers.

Review Methodology
Review Protocol
This systematic review was conducted strictly ac-
cording to the PRISMA (Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses) guide-
lines, which provide a specific and systematic ap-
proach to identification, selection, evaluation, and 
synthesis of research studies [17]. Adherence to 
PRISMA provides methodological rigor, reduces 
bias, and enhances reproducibility in the review pro-
cess. Protocol registration in an official registry such 
as PROSPERO was not performed, but all PRISMA 
principles provisions were literally followed at every 
phase [18].

Inclusion Criteria
We thought about including only studies for this re-
view that met the following inclusion criteria:

•	 Relevance to Detection of Source of Soil Pol-
lution: The study must be directly related to 
detection or soil pollution source classifica-
tion, and not overall soil monitoring.

•	 Machine Learning Algorithm Application: The 
inclusion was limited to studies that applied 
supervised, unsupervised, semi-supervised, or 
reinforcement learning algorithms. They vary 
from the standard ML models such as Decision 
Trees and Support Vector Machines to sophis-
ticated ones such as Deep Neural Networks 
and ensemble methods.

•	 Type of Pollution: Heavy metals (e.g., lead, cad-
mium, arsenic), organic pollutants (e.g., PAHs, 
VOCs), agrochemicals (e.g., herbicides, pesti-
cides), hydrocarbons, and microplastics were 
the types of soil pollutants under consideration.

•	 Peer-Reviewed Journal Articles: Full-text 
peer-reviewed journal articles or academic con-
ference proceedings only from credible sources.

•	 Publication Year Window: 2013 to 2024.
•	 Language: English language publications only.

Exclusion Criteria
The exclusion criteria applied are as follows:

•	 Inadequate Application of Machine Learning: 
Individuals using statistical, rule-based, or de-
terministic modeling alone (e.g., linear regres-
sion without the application of machine learn-
ing method) were excluded.

•	 Nonenvironmental Theme: Those articles with 
focus solely on non-polluting soils such as ero-
sion, salinity, level of nutrients, or overall fertil-
ity were excluded unless as related to the deter-
mination of sources of pollution.

•	 Non-Primary Literature: Editorials, opinion 
pieces, technical comments, book chapters, and 
non-peer-reviewed grey literature were ruled 
out on academic quality.

•	 Methodological Opacity: Flawed research stud-
ies with no explicit description of the ML mod-
el, data employed, or evaluation process were 
ruled out to check replicability and quality.

The protocol offered a systematic and rigorous guide-
line to the process of selecting the best and high-
est-quality studies on machine learning application 
in soil pollution source identification. By employing 
well-defined inclusion and exclusion criteria, the re-
view is transparent with methodological consistency 
ensured.

Search Strategy
To conduct a comprehensive and reproducible assess-
ment of the relevant literature, a systematic search 
strategy was developed according to PRISMA guide-
lines. The aim was to identify high- quality peer-re-
viewed literature on the application of machine learn-
ing (ML) for source identification of soil pollution 
under various environmental conditions.
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Databases Used
The academic databases utilized were as follows due 
to the fact that they provide extensive coverage of 
environmental science, engineering, data science, 
and interdisciplinarity:

•	 Scopus – Offers great coverage of scientific 
topics from environmental science to comput-
er science.

•	 Web of Science – Renowned for its high-im-
pact, peer-reviewed journals.

•	 IEEE Xplore – Technologically driven and 
specialized in nature when it comes to technol-
ogy and engineering, great for machine learn-
ing and AI-based research.

•	 ScienceDirect (Elsevier) – One of the main 
sources of research in applied and environ-
mental sciences.

•	 SpringerLink – Offers multidisciplinary jour-
nals with good emphasis on environmental 
modeling and AI.

•	 Google Scholar – Used to retrieve any other 
suitable or recently published material not in-
cluded within the listed databases.

The databases were chosen between disciplinary 
strength (i.e., IEEE Xplore for ML, ScienceDirect 
for environmental studies) and cross-disciplinary 
coverage (i.e., Scopus, Web of Science).

Keyword Strategy and Boolean Operators
Three blocks of keywords constituted the search 
strategy:

•	 Concept 1: Soil Pollution/Contamination: 
(soil OR “soil quality” OR “soil health”) AND 
(pollut* OR contaminat* OR heavy-metal* 
OR pesticide* OR microplastic* OR chemi-
cal* OR toxic*)

•	 Concept 2: Source Detection/Identification: 
(“source detection” OR “source identification” 
OR “pollutant origin” OR “pollution track-
ing” OR “attribution” OR “fingerprinting” OR 
“hotspot detection”)

•	 Concept 3: Machine Learning: (“machine 
learning” OR “deep learning” OR “artificial 
intelligence” OR “AI” OR “neural network*” 
OR “support vector machine*” OR “random 
forest*” OR “ensemble learning” OR “cluster-
ing” OR “classification” OR “regression”)

These were then Booleaned together to form the final 
search string:
Final Search Query: ((soil OR "soil quality" OR 
"soil health") AND (pollut* OR contaminat* OR 
heavy-metal* OR pesticide* OR microplastic* OR 
chemical* OR toxic*)) AND ("source detection" OR 
"source identification" OR "pollutant origin" OR "pol-
lution tracking" OR "attribution" OR "fingerprinting" 
OR "hotspot detection") AND ("machine learning" 
OR "deep learning" OR "artificial intelligence" OR 
"AI" OR "neural network*" OR "support vector ma-
chine*" OR "random forest*" OR "ensemble learning" 
OR "clustering" OR "classification" OR "regression")

Search Strategies Used
•	 Truncation (*) was utilized to capture a varia-

tion of word forms (e.g., pollut* would capture 
pollutant, pollution).

•	 Phrase searching (“\””) offered exact multi-word 
phrase matching like “machine learning” or 
“source identification.”

•	 Wildcards were not used due to database syntax 
variation but truncation allowed for term cov-
erage.

Duplicate Management and Filtering
After record extraction from all of the databases, find-
ings were exported to a reference management tool 
(i.e., Zotero or Mendeley) for deduplication. Duplica-
tion detection was performed based on title, authors’ 
names, and publication year and deleted automatical-
ly. Manual screening was performed for the second 
time with a view to eliminating false duplicates and 
ensuring unique inclusion of studies. Article titles and 
abstracts of the remaining articles were screened for 
exclusion and inclusion criteria (as outlined in Section 
2.1), with additional full-text screening of included 
studies. A record of excluded studies and the reasons 
for exclusion was maintained to be transparent.

Selection Process
Study selection was subjected to a rigorous mul-
ti-stage screening to incorporate relevant and high- 
quality studies according to PRISMA guidelines. 
Database search and duplicate removal: Database 
search retrieved 1,600 records initially (Section 2.2). 
While importing records into a reference management 
system, duplicate records were found and removed, 
leaving a lesser number of 1,000 unique articles to be
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screened further.

Title and Abstract Screening: Two reviewers conducted independent title and abstract screening for initial 
relevance to pre-specified inclusion and exclusion criteria (Section 2.1). At this point, those studies that were 
clearly out of scope of soil pollution source identification or lacked an ML focus were excluded. Where disa-
greement between reviewers existed, these were resolved through discussion to consensus. In this phase, 2,520 
articles were excluded because of limited environmental relevance, non-ML method, or no data in abstracts.

Full-Text Screening: Full texts of the other 600 potentially qualified articles were independently downloaded 
and screened by the same two reviewers for eligibility based on the inclusion criteria. Articles that were not 
soil-specific, applied non-machine learning methods, or employed non- source detection as their goal were 
excluded. Exclusion reasons at this stage particularly were: “not soil-related,” “no ML application,” and “no 
source detection goal.” 20 studies were excluded at this stage.

PRISMA Flow Diagram: To enable a simple graphical representation of the screening and selection process, 
a PRISMA flow diagram is constructed. It will illustrate the records retrieved, duplicates excluded, articles 
screened, full texts examined for eligibility, and studies ultimately included in the review. Publication of this 
flow diagram is a mandatory item of the PRISMA checklist, which adds transparency and reproducibility to 
the systematic review.
 

                              

Quality Assessment
To determine the methodological quality and comparability of studies included in this systematic review, 
thorough quality appraisal was conducted. Considering that certain focus is being placed on machine learning 
(ML) techniques in environmental science, the quality assessment procedure was modified from available 
instruments such as the Critical Appraisal Skills Programme (CASP) checklist, Joanna Briggs Institute (JBI) 
tools, and the AMSTAR (A Measurement Tool to Assess Systematic Reviews) process. This was a mixed as-
sessment targeted at significant points of concern to ML research, these being:

•	 Properly Framed Problem: Whether framed properly was the identification of soil pollution sources   
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   and extent.
•	 Quality and Quantity of Dataset: Appropriate-

ness and relevance of the dataset, e.g., repre-
sentativeness, completeness, and dealing with 
missing values.

•	 Data Preprocessing and Feature Engineering: 
Appropriateness and readability of the data 
preprocessing methods, i.e., normalization, 
feature reduction, and feature selection.

•	 Explanation of why a particular machine learn-
ing approach is used under problem nature and 
data type.

•	 Performance Metrics and Validation: Associ-
ated evaluation metrics (e.g., precision, recall, 
F1-score, accuracy), and adequate validation 
methods like k-fold cross-validation or exter-
nal validation.

•	 Reproducibility of Results: Adequate method-
ological information, code, or data to repro-
duce.

•	 Real-World Validation: Testing model perfor-
mance against field data or an external data-
base for the purpose of establishing real-world 
usability.

Evaluation Process
Two independent reviewers performed quality ap-
praisal of all studies included to rule out bias and 
ensure consistency. In the event of disagreement on 
scores or interpretation, it was addressed through 
discussion or a third reviewer’s referral. Quali-
ty scores directed the synthesis process by placing 
greater value on the strength of evidence from more 
robust studies in the narrative analysis. This inten-
sive quality review process ensured that conclusions 
made from the review are based on solid and rigor-
ous evidence and therefore provide more sound rec-
ommendations for future application and research.

Data Extraction and Synthesis
Data Extraction
A template extraction table was prepared with an 
effort to systematically extract the key information 
from each of the studies included. The following in-
formations were extracted for enabling comparison 
and analysis in detail:

•	 Study ID, Author(s), Year of Publication
•	 Pollutant(s) Investigated: Type of soil pollut-

ants that were investigated (e.g., heavy metals,

 organic pollutants, pesticides, microplastics)
•	 Type of Pollution Source: Categorization of the 

pollution sources such as industrial effluent, ag-
ricultural runoff, mining, or combined sources

•	 Location: Country or region in which the study 
was conducted

•	 Type(s) of Data Used: Categories of input data 
that were utilized for the modeling (for instance, 
sensor data, satellite data, lab soil data, GIS data)

•	 ML Algorithm(s) Used: Type of ML techniques 
employed (e.g., Random Forest, Support Vector 
Machine (SVM), Convolutional Neural Net-
works (CNN), k-Nearest Neighbors (k- NN))

•	 Problem Type: Type of ML problem (e.g., clas-
sification, regression, clustering)

•	 Key Features/Inputs: Most significant variables 
or features used for training

•	 Performance Measures Reported: Quantitative 
performance metrics such as accuracy, preci-
sion, recall, F1-score, Root Mean Square Error 
(RMSE), coefficient of determination (R²)

•	 Main Results of Significance to Source Identifi-
cation: Most significant results and conclusions 
drawn in relation to source identification of pol-
lution

•	 Strengths and Weaknesses: Strengths and weak-
nesses as identified by the study

•	 Tools/Software Used: ML modeling environ-
ments or libraries (Python, R, TensorFlow, 
WEKA) employed

Synthesis Strategy
Because of anticipated heterogeneity in datasets, pol-
lutant under study, ML algorithms, and performance 
measures anticipated, a thematic synthesis approach 
was employed. Data were synthesized into clusters 
thematically by category as follows:

•	 Machine learning algorithm types and compara-
tive performance

•	 Data type differences and preprocessing strate-
gies

•	 Pollutant types and respective detection chal-
lenges

•	 Study environmental and geographical condi-
tions

The findings were subsequently described, compared, 
and interpreted by a narrative synthesis for these topics 
in an attempt to give a collective picture of state-of-
the-art in ML-based soil pollution source identification
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Quantitative meta-analysis in a formal sense was 
not feasible due to profound heterogeneity between 
studies. Heterogeneities in data sets, target pollut-
ants, ML methods, and performance metrics meant 
that statistical pooling in a direct manner was not 
possible [19]. Narrative and thematic synthesis thus 
form an effective foundation to determine trends, ar-
eas of knowledge, and opportunities for research.

Results of the Review
Overview of Selected Studies
This chapter provides a descriptive summary of the 
studies selected for the systematic literature review 
by publication trends, type of pollutants investigat-
ed, and geographic location. This background infor-
mation is used to provide a description of the cur-
rent research direction and highlights how machine 
learning is being increasingly used to detect sources 
of soil contamination across the world. The chap-
ter provides an introduction to the present research 
landscape, establishing primary trends in publica-
tion activity, polluting types, and geographic focus. 
These qualitative results set the stage for the compre-
hensive analysis that follows, particularly regarding 
how machine learning techniques are being utilized 
to inform source identification within soil pollution 
scholarship. This context of situation is critical to 
understand in terms of both the work that has already 
been accomplished and the problems that continue 
to persist with applying ML solutions under different 
environmental contexts.

Descriptive Statistics
100 studies were used and critically reviewed for 
this study. The studies span a wide period of publi-
cation, though it has significantly accelerated in the 
previous decade in terms of the number of publica-
tions. This boom is equated with the growing need 
for the application of artificial intelligence (AI) and 
machine learning (ML) techniques to environmental 
problems, e.g., pollution detection [20]. This coin-
cides with the greater availability of open-source AI 
software, cheaper computation, and the availability 
of low-cost environmental sensors, all of which have 
made advanced modeling techniques within reach 
for everyone.

Literature that was assessed was made available in 
a very diverse range of academic journals, websites,

and sites corresponding to the very interdisciplinary 
scope of this field of research. High- impact publica-
tions such as Environmental Pollution, Science of the 
Total Environment, Environmental Science and Tech-
nology, IEEE Transactions on Geoscience and Remote 
Sensing, and Journal of Environmental Management 
were cited as common publication outlets. This diver-
sity showcases the intersection of a number of disci-
plines—environmental science, geospatial analysis, 
data science, and engineering—applied to identifying 
complex pollution issues through machine learning.

Pollutants Addressed
The majority of studies under review covered the 
identification and modeling of heavy metal pollutants 
such as lead (Pb), cadmium (Cd), arsenic (As), mer-
cury (Hg), and chromium (Cr). These pollutants are 
typically found in industrial sites, mining operations, 
and agricultural fields impacted by fertilizers and 
pesticides. Subsequent research widened their scope 
to include organic contaminants such as pesticides, 
polycyclic aromatic hydrocarbons (PAHs), and vola-
tile organic compounds (VOCs), causing more exten-
sive damage to ecosystems and human health. Certain 
studies used a mixed-pollutant protocol and examined 
both inorganic as well as organic pollutants simultane-
ously to more accurately simulate real-world pollution 
environments.
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Pollutant Type Examples Typical Sources Study Focus
Heavy Metals Lead (Pb), Cadmium 

(Cd), Arsenic (As), 
Mercury (Hg), 
Chromium (Cr) 
Pesticides, Polycyclic

Industrial sites, mining 
activities, agriculture 
(fertilizers, pesticides)

Identification and 
modeling of heavy metal 
contamination in soil

Organic Pollutants Aromatic Hydrocarbons 
(PAHs), Volatile Organic 
Compounds (VOCs)

Agricultural runoff, 
industrial discharge, 
fossil fuel residues

Assessment of ecological 
and health risks from 
organic soil contaminants

Mixed Pollutants Both inorganic (e.g., 
heavy metals) and 
organic (e.g., PAHs, 
VOCs)

Urban, peri-urban, and 
agro-industrial zones

Simulation of complex, 
real-world soil pollution 
scenarios for better 
accuracy

Table 3.1 summarizes the range of pollutants that were covered in the selected studies, focusing on the dom-
inance of heavy metals and more recent issues such as microplastics—a relatively recent focus within soil 
pollution science. These newer contaminants also present additional modeling challenges due to their complex 
chemical behavior and detectability, offering additional scope for machine learning methodology to deploy 
[21].

Geographic Distribution and Environmental Context
The research canvassed was geographically spread over Asian, European, and North American research, with 
high concentrations of Chinese, Indian, United States, and Western European work. These are environmental 
“hotspots” either through focused industrial activity or ongoing environmental monitoring. Figure 3.2 maps 
out the spatial distribution of the investigated sites, demonstrating how study interest is globally widespread 
but locally focused on areas with higher pollution concerns.

While the primary focus of all the included studies was soil contamination, some extended their analytical 
reach to encompass multi-media environmental parameters. These extended studies incorporated measure-
ments of air and water quality, as well as soil, to provide a more unified image of contamination pathways. 
This incorporation of the additional variables did not interfere with the core purpose of source apportionment 
of the soil contamination. Rather, it enhanced the analysis by illustrating the unification of environmental 
compartments.

Machine Learning Techniques Applied
The research at hand has the broad applicability of machine learning (ML) techniques to soil contaminant 
source identification with the predominant control by supervised learning techniques. Among them, Random 
Forest (RF) is the most commonly used technique [22]. RF is utilized because it has the ability to handle en-
vironmental noisy and high-dimensional data effectively and provide interpretable results in terms of ranks 
of feature importance [23]. Support Vector Machines (SVM) also prevail in literature for being particularly 
valued for their precision in classification issues as well as their capacity to cope with intricate decision bound-
aries even without large sets of data [24-26]. 

Artificial Neural Networks (ANN) are used widely because they can detect nonlinear relationships character-
istic of environmental processes [27,28]. Deep learning techniques such as Convolutional Neural Networks 
(CNNs) and Long Short-Term Memory (LSTM) networks have been immensely used in the last couple of 
years, especially in studies that make use of spatial and temporal data [29]. CNNs provide optimal handling of 
spatially organized inputs like satellite pictures or geospatial maps, while LSTMs are able to effectively detect 
temporal patterns in time series data utilized for modeling pollution patterns [30,31]. 



J.of Geo Eco Agr Studies   Vol:2,3. Pg:10

Review Article Open Access

Unsupervised learning methods, though less com-
mon, have been used in exploratory data analysis. 
Methods such as K-means clustering are used to clus-
ter soil samples into similarities and identify areas 
where pollution has taken place or trends differ from 
what would be so in the absence of labeling [32,33]. 
Dimensionality reduction and feature extraction 
have utilized Principal Component Analysis (PCA) 
in an attempt to enhance the performance of mod-
els [34-36]. Ensemble methods that involve running 
several algorithms simultaneously, such as boosting 
and bagging methods, are common for improving 
prediction capability and generalizability [37,38]. 
Sequential model performance improvement using 
boosting algorithms such as Gradient Boosting Ma-
chines or XGBoost is employed for dealing with dif-
ficult-to-predict scenarios, while bagging methods 
such as Random Forest address variance through the 
aggregation of numerous decision tree predictions.

The algorithms are implemented in various types 
of machine learning issues in soil contamination 
research. Classification issues are the basis, where 
models are providing categorical sets back to sourc-
es of contamination, i.e., industrial, agricultural, or 
background natural [39]. Regression techniques, 
though with smaller demand, are used in estimating 
the concentration of contamination or predicting the 
relative contribution of various sources of contami-
nation [40]. Cluster analysis allows for natural soil 
groupings of data to be meaningful in the identifi-
cation of new patterns or hotspots irrespective of 
access to the source categories [41,42]. Algorithm 
choice has a direct correlation to data nature and 
problem to be solved. Random Forests and SVMs 
continue to be popular as they are reliable and simple 
to interpret in classification problems, whereas deep 
learning models progressively find application in 
modeling intricate spatial and temporal data [43-46]. 
This heterogeneity mirrors the increased complexity 
and sensitivity of machine learning methods in iden-
tifying the source of soil contamination.

Data Types and Sources
The reviewed literature used various types of data as 
inputs to machine learning algorithms for the deter-
mination of soil source pollution. The data sources 
in the majority of the cases are largely in- situ sen-
sor measurement types, remote sensing images, GIS

data, environmental history records, and, in some 
use cases, simulation data [47]. In-situ sensor meas-
urements are largely used because they are first-hand 
measurements of the pollutants and soil parameters 
[48]. Electric conductivity, pH, and heavy metal con-
tent sensors provide instantaneous, localized meas-
urements of worth in determining the magnitude of 
the pollution [49]. These measurements are the basis 
of the majority of ML models addressing point-based 
or small- area soil sampling.

Satellite and remote sensing have been increasingly 
important, especially for environmental monitoring 
of extended spatial areas [50]. Multispectral and hy-
perspectral sensors, mounted on Sentinel and Landsat 
satellites, sweep intense spectral information in vary-
ing wavelengths, and through indirect deduction, the 
existence of pollutants and soil types can be ascer-
tained [51]. LiDAR measurements also supplement 
the spatial information by allowing topography map-
ping with accuracy, which helps in marking the pol-
lutant dispersion patterns [52]. These data enable the 
identification of polluted locations in wide geograph-
ical areas outside of the spatial limitation of ground 
sampling. Geographic Information System (GIS) data 
facilitate analysis by the inclusion of contextual spa-
tial covariates such as land use, topography, proximity 
to industrial facilities, road infrastructure, and water 
bodies [53,54]. These layers provide critical environ-
mental and human context to augment the accuracy of 
source attribution models by closing the gap between 
observed pollution and probable human activities or 
natural conditions.

They also incorporate prior environmental informa-
tion in the majority of studies. Some of such infor-
mation includes prior history of monitoring, industri-
al permits, waste disposal reports, and other records 
of regulations that contain temporal information and 
ancillary information for pollution events and sourc-
es. Incorporation of historical data enables models to 
determine long- term trends of pollution as well as 
distinguish between recent and remaining contamina-
tion. Where partial or limited real-world data exist, 
other scientists have utilized simulated data to train 
and test models within controlled environments [55]. 
These simulated data sets enable testing for the ability 
of the ML algorithms to generalize and detect pollu-
tion under varying hypothetical scenarios.
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Before applying such heterogeneous data to train 
machine learning models, strict preprocessing and 
feature engineering phases are needed. Original data 
tends to be normalized or standardized to normalize 
the scales, and missing data imputation techniques 
[56]. Outlier removal improves the data quality to 
avoid noise that can confuse the learning models 
[57].

Feature engineering is required to enhance model 
performance by creating novel, more informative 
features from available data [58-60]. For instance, 
spectral indices from satellite images such as the 
Normalized Difference Vegetation Index (NDVI) 
can be used as surrogates for soil health and pollu-
tion [61]. Spatial interpolation methods interpolate 
values at unsampled locations, providing added 
spatial information to point data. Temporal features 
extracted from time-series data retain the temporal 
dynamics of contaminants [62]. To manage high-di-
mensional information and prevent overfitting, re-
search normally uses feature selection and dimen-
sion reduction strategies. One widely used approach 
is Principal Component Analysis (PCA) to reduce 
the number of variables but retain most of the vari-
ance. Other techniques like t-Distributed Stochastic 
Neighbor Embedding (t-SNE) and correlation-based 
filters aid in the selection of the most effective fea-
tures, increasing computational effectiveness and 
model interpretability [63,64].

Performance Evaluation
Evaluating the performance of machine learning 
models in identifying the source of soil pollution is 
a range of measures contingent upon the nature of 
the problem—classification, regression, or cluster-
ing [65,66]. For classification problems, common 
in this research discipline, the most common meas-
ures are accuracy, precision, recall, F1-score, and the 
Area Under the Receiver Operating Characteristic 
Curve (AUC-ROC) [67]. Accuracy measures the 
global rate of correctly classified instances, and pre-
cision and recall measure about the model’s ability 
to correctly report pollution sources with no misses 
or false alarms [68]. F1-score is the balance between 
precision and recall and provides a single score for 
imbalanced data sets. AUC-ROC measures the dis-
criminative power of the model at varying levels of 
classification thresholds and is hence easy to compare

binary or multi-class classifiers.

In applications where the problem has been framed 
as a regression task—i.e., pollutant concentration 
or estimation of source contribution—performance 
metrics have been founded on metrics like the Root 
Mean Squared Error (RMSE), Mean Absolute Error 
(MAE), and the Coefficient of Determination (R²). 
Both RMSE and MAE measure the average magni-
tude of prediction errors, with RMSE placing larger 
errors at greater weight [69]. R² is the proportion of 
variance in observed data accounted for by the mod-
el and a goodness-of-fit measure. More random but 
used clustering analyses for pattern determination of 
soil contamination use indicators such as the Silhou-
ette score and Davies-Bouldin index. These indicators 
assess the compactness and separation of clusters and 
confirm determined pollution clusters.

Performance comparison between studies shows that 
Random Forests usually perform better since they are 
robust to noisy and heterogeneous data, particularly 
in detecting heavy metals. Deep learning techniques 
such as CNNs are potential with spatially dense data 
such as satellite imagery but require additional data 
volume and computational resources. Support Vector 
Machines are suitable for small structured data but be-
come overwhelmed by large spatial data. Ensemble 
methods and hybrid models tend to outperform indi-
vidual algorithms through complementary strengths. 
Inter-study direct comparison is avoided by heteroge-
neity in datasets, types of pollutants, locations, and 
evaluation methods. Data heterogeneity in quality, 
preprocessing, and reporting of performance meas-
ures makes comparison challenging. Notwithstanding 
that, a few studies of within-study comparative tests, 
ensemble methods, and Random Forests were top per-
formers overall [70].

Interpretability and Practical Use
In the past 10 years, the importance of Explainable 
Artificial Intelligence (XAI) has rapidly and amaz-
ingly, especially in environmental contexts, such as 
identification of sources that contribute to the soil 
pollution [71]. Even though machine learning sys-
tems are improving, especially with the emergence of 
deep learning, prediction and decision-making need 
to be clear and easy to understand, that is transparent. 
Such transparency is also critical to the establishment 
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of policymaker, environmental regulator, and other 
stakeholder trust, which is reliant on such models for 
informing remediation activities and regulatory deci-
sion-making [72].

There have been numerous XAI techniques em-
ployed throughout the reviewed studies above in an 
attempt to enhance explainability of the model [73]. 
Techniques like SHAP (SHapley Additive exPla-
nations) and LIME (Local Interpretable Model-ag-
nostic Explanations) allow researchers to explain a 
single prediction by attributing each input feature’s 
contribution towards the model’s output [74]. Tree-
based predictors like Random Forests provide fea-
ture importance scores by default, which are the 
most significant soil or environmental variables that 
take part in source classification or prediction of the 
pollution level. Mechanisms of attention have also 
been used in deep learning for guiding the model to 
focus on the corresponding spatial or temporal re-
gions from input data for better interpretability.

These interpretability methods aid in determining 
the most significant environmental elements that are 
causing pollution and where they might be coming 
from, thus closing the loop between informative 
knowledge and black-box models. For example, 
XAI can shed light on the way in which proximity 
to industrial sites or certain chemical soil character-
istics influence pollution detection, which can then 
facilitate effective interventions.

Several case studies throughout the literature 
searched have shown applied influence through 
moving beyond model development in math to pi-
lot testing or field use. One example is where ML 
models had been built into environmental monitor-
ing systems, assisting regulators in finding areas 
of contamination or tracing sources of pollutants 
more efficiently than using current methods [75]. 
These analyses exemplify the real value in combin-
ing machine learning with interpretability methods 
in decision-making and environmental management 
enhancement. Incorporation of explainable AI meth-
od is crucial in transforming advances in machine 
learning into actionable soil pollution source iden-
tification tools usable by stakeholders and initiating 
proper actions in the environment.

Discussion
Trends and Advancements
The recent review of literature displays a few gener-
al directions and breakthroughs characteristic of the 
machine learning state of the art for source identifica-
tion of soil pollution. One of the directions has been 
moving away from the classic machine learning algo-
rithms such as Random Forests and Support Vector 
Machines towards more complex deep architectures. 
This has been enabled, in large measure, through ad-
vances in computing power and the increasing avail-
ability of huge, high-resolution environmental data to 
use for training advanced neural network models [76].

At the same time, remote sensing and Geographic In-
formation System (GIS) data have been fused more 
into ML models. Fusing multispectral and hyperspec-
tral satellite images, LiDAR images, and spatial con-
text data enhanced the degree to map soil pollution 
in vast geographical areas with high precision and 
detail [77]. These technologies also promise constant 
surveillance of vast and remoteness-plagued areas, 
unencumbered by restrictions of ground sampling. 
Another basic advancement is the spatiotemporal 
models which deals with both spatial and temporal 
soil pollution dynamics. When time series data is uti-
lized together with spatial characteristics, the models 
provide greater understanding of patterns in pollutant 
diffusion. They also help shifting locations of contam-
ination hotspots to facilitate proactive environmental 
management.

Also, the application of techniques in increased de-
mand manifests the emphasis in general towards trans-
parency and interpretability [72]. While stakeholders 
demand greater responsibility from AI models, the 
creation and use of techniques like have become in-
creasingly pertinent to ensure that deep models offer 
actionable, interpretable knowledge. These trends are 
characteristic of an advanced research area where in-
creased data availability, computational power, and 
methodological improvement synergistically com-
bine to enhance the performance and capabilities of 
machine learning in tracking the origins of soil pol-
lution [74].

Gaps in Existing Literature
Despite some fairly major developments in the appli-
cation of machine learning to source detection of soil
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contamination, there remain some fairly major re-
search gaps. Most notably is the absence of standard-
ized datasets that can serve as benchmarks against 
which ML models can be tested and evaluated [78]. 
The heterogeneity of data source, pollutant types and 
geographical setting serves to limit replicability and 
generalizability of findings [79]. Some groups of 
pollutants, in particular complex mixtures that con-
tain both organic and inorganic pollutants, continue 
to be poorly investigated. Most research is focused 
on individual classes of pollutants such as pesticides 
or heavy metals, which is reductionist given the mul-
tidimensional reality of real soil pollution. Another 
significant deficiency is minimal focus on identify-
ing multiple co- occurring pollution sources. The 
majority of existing models are designed to classify 
or quantify a single source, but in fact soils are af-
fected by overlapping pollution from co-occurring 
activities requiring more sophisticated multi-source 
attributional approaches [80].

The capacity of the ML models to generalize across 
the range of variable geological and environmental 
conditions is not dealt with satisfactorily as well. 
Models trained with data from one area perform 
poorly when applied in other areas due to variations 
in soil types, climate, and anthropogenic activities, 
indicating the necessity for adaptive or region-
al modeling approaches. The discipline also lacks 
long-term monitoring experiments that are instru-
mental in determining temporal trends in pollution 
dynamics and confirming predictive models over 
time. The developing world, where pollution is gen-
erally high and data gaps are a serious limitation, is 
also under-represented in studies. The geographical 
skew restricts the universal applicability of existing 
methods. The majority of studies emphasize predic-
tive accuracy rather than explicit source attribution, 
and the inquiry is whether pollution is present or 
not, rather than untangling complicated sources and 
pathways of pollutants [81]. Closing this gap will 
entail combining domain knowledge and state-of-
the-art ML methods to enhance interpretability and 
real-world usefulness.

Limitations in Datasets/Methodologies
Literature in consideration has a number of shared 
limitations on methods and datasets that discourage 
machine learning development for source detection

of soil contamination. Key among the limitations are 
the quality and availability of data. Spatially broad, 
temporally resolved high- quality data are sparse. 
Most studies are localized or small-scale on datasets 
that don’t capture variability in soil contamination 
and therefore limit model generalizability to large-
scale use. Imbalance of data is also extremely critical. 
Dirty zones typically form a minority compared to 
clean or less-dirty zones, and therefore their databas-
es get imbalanced, and consequently machine learn-
ing algorithms can become biased towards majority 
classes, and therefore lose their sensitivity to detect 
contamination accurately.

It is also difficult to obtain valid ground truth data to 
train and test models. Testing for soil contamination 
typically involves costly and time-consuming sam-
pling and lab analysis as a constraint on confirmed 
contamination label availability. Unavailability un-
dermines model prediction confidence and perfor-
mance evaluation as well. Methodological differences 
introduce added complexity. There is considerable 
heterogeneity in method reporting approaches of 
studies, experimental setups, and performance met-
rics. It makes systematic synthesis of results as well 
as result comparison difficult. Heterogeneity is higher 
as differences vary among preprocessing steps, fea-
ture choice, and validation procedures. The majority 
of the prevalent machine learning models, particularly 
those based on deep learning, are not interpretable. 
These “black box” models provide minimal transpar-
ency into feature contributions to predictions, mak-
ing it challenging to interpret, trust, and act on model 
outputs. This constraint underscores the importance 
of including explainable AI methods for enhancing 
transparency. Mitigation of these constraints is im-
portant in striving towards more stable, robust, and 
interpretable ML solutions for source attribution of 
soil pollution.

Emerging Technologies
Emerging machine learning and artificial intelligence 
technologies have great potential in overcoming the 
current challenges and innovating in the research field 
of soil pollution source identification. The new tech-
niques offer distinctive capabilities that can be utilized 
to enhance data fusion, model accuracy, privacy pro-
tection, and adaptive environmental monitoring. Fed-
erated Learning is a novel approach to collaborative
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model training. By enabling various organizations 
or geographical sites to collaboratively train ma-
chine learning models without revealing sensitive 
raw data, federated learning avoids insurmountable 
privacy and data sharing roadblocks. It has the most 
use in the soil pollution monitoring task where en-
vironmental agencies, research institutes, and indus-
trial parties possess insightful yet sensitive datasets. 
Federated architectures thus can enable more use of 
the data and more generalizable models without sac-
rificing data ownership and confidentiality.

Geospatial AI combines machine learning with so-
phisticated spatial analysis to take advantage of spa-
tial dependencies and relationships in environmental 
systems [82]. This has the potential to improve the 
precision of contamination mapping and source at-
tribution via formal quantification of spatial autocor-
relation and patterns. It is best done with improved 
precision in pollution hotspot detection and pollut-
ant dispersal relative to landscape features such as 
topography, hydrology, and land use. Graph Neural 
Networks (GNNs) offer powerful means to repre-
sent complex, networked environmental process-
es. GNNs can encode pollution sources, transport 
pathways, and receptors as graph nodes and edges, 
preserving multi-dimensional relationships in soil 
pollution systems [83]. It is particularly useful for 
tracing the movement of pollutant through interac-
tive soil, water, and air media in terms of more inte-
grated source identification and impact assessment.

Reinforcement Learning can be used as well to cre-
ate adaptive environmental monitoring strategies. 
Agents of reinforcement learning are able to learn 
optimum sampling policies and resource allocation 
policies and adaptively modify monitoring activities 
to prioritize areas of high risk or emerging pollution 
events to be more responsive and efficient. Com-
bined, these emerging technologies provide new 
opportunities for scaling up the accuracy, scalabil-
ity, and applicability of machine learning-based soil 
pollution source inference. Their inclusion in future 
studies and applications can be anticipated to im-
prove beyond the limitations of the present and ena-
ble more informed environmental decision-making.

Integration with Policy and Real-time Monitoring 
Systems
The application of machine learning to source iden-
tification of soil contamination has significant prac-
tical implications for environmental policy and gov-
ernance. By providing accurate and timely source 
identification of contamination, ML-based models 
can inform more targeted policy action and enhance 
regulatory compliance. Decision-makers can use the 
insights to prioritize cleanup in hotspots, allocate re-
sources optimally, and design evidence-based policy 
that addresses the sources of contamination. In addi-
tion to retrospective analysis, the integration of ML 
models into real-time monitoring systems provides 
the potential for proactive environmental manage-
ment. Real-time monitoring systems, through their 
networks of sensors and automated analysis of data, 
have the potential to enable early warning of pollu-
tion incidents and support prompt response meas-
ures. Such potential is especially crucial in preventing 
widespread contamination and minimizing ecological 
and public health impacts [84,85].

However, the translation of machine learning research 
into deployable systems and actionable policy faces 
many challenges. Regulatory approval often requires 
models to be able to offer transparency, reliability, 
and reproducibility—qualities that not all current ML 
approaches have. Additionally, implementing the nec-
essary data infrastructure for maintaining data collec-
tion, processing, and storage can be expensive. There 
is also a need to build capacity within environmental 
agencies to be in a position to interpret model outputs 
and substantively integrate them into decision-mak-
ing. Despite these challenges, the intersection of state-
of-the-art ML technologies and environmental gov-
ernance can revolutionize soil pollution management, 
interventions of which will be more targeted, timely, 
and effective.

Conclusion and Research Gaps
Summary of Key Findings
This systematic review proves that collective machine 
learning algorithms, for example, Random Forest here 
and highly advanced deep-learning models like Con-
volutional Neural Networks, are now omnipresent in 
the majority of soil contamination source identifica-
tion applications. These algorithms are highly effi-
cient in harnessing a vast array of data sources such
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as remote sensing imagery, in-situ sensor measure-
ments, GIS data, and historical data in order to detect 
complex spatial and temporal pollution patterns [83].

Performance metrics as documented across re-
searches show overall high accuracy and stability. 
Model performance is still challenging to compare 
like-to-like owing to variability in methods, dataset 
changeability, and varying practice in assessment. 
Explainable AI (XAI) methodologies usage is quick-
ly trending higher, elevating model explainability 
and interpretation of drivers of environmental pol-
lution [73].

Although great leaps have been taken, there are still 
gaps-most significantly, the lack of harmonized data 
sets, lack of regular multi-source attribution, and un-
der-representation of diverse global geographical ar-
eas. New technology across domains like federated 
learning, geospatial AI, and graph neural networks 
can potentially narrow some of the gaps and advance 
research and real- world application.

Explicit Research Gaps and Open Problems
With the discussion presented in Section 4.2, certain 
research needs and hot issues are emergent as being 
among the key lines of future machine learning for 
soil pollution source localization research:

•	 There is an urgent need for developing open, 
standardized, and representative benchmark 
databases with the objective of enabling fair 
evaluation, comparison, and reproducibility of 
ML models between and within research com-
munities and environmental settings.

•	 Robust, interpretable machine learning models 
that can differentiate well and segregate well 
multiple, correlated sources of contamination 
are in dire need to model soil pollution re-
al-world complexity.

•	 Long-term validation and generalizability tests 
should be the focus of future research, where 
the ML models must be ensured to be accurate 
and reliable under other geographical condi-
tions, soil types, and time periods.

•	 The combination of mechanistic environmen-
tal models with data-driven machine learning 
methodology has the promise of resulting in 
better interpretability and prediction capabili-
ty.

The solution to these issues will be necessary in order 
to build upon the scientific basis and application wor-
thiness of machine learning methods in environmen-
tal pollution monitoring and regulation.

Implications for Future
As machine learning evolves and environmental mon-
itoring hardware becomes more advanced, it’s easy to 
picture studies on the identification of sources of soil 
pollution taking some very interesting new directions. 
First and foremost is the development of hybrid mod-
els—techniques that combine the scientific heft of 
conventional environmental models with the flexibil-
ity and learning ability of machine learning. Whereas 
traditional models assume processes that are chemi-
cally and physically well characterized, they become 
less effective when confronted with complicated re-
al-world data. Machine learning, however, is very 
effective at discovering patterns and predicting fairly 
quickly from large sets of data. The two methods can 
complement each other—enhancing the precision of 
prediction and enhancing our knowledge of the way 
pollutants migrate through the ground.

Another important area of emphasis in the future is 
making environmental science machine learning 
models more interpretable. A lot of ML models today 
are essentially “black boxes”—they produce results, 
but it is not always clear how they got there. This is 
a bad thing if those results are going to be used to 
guide environmental policy or public health policy. 
Researchers have to build models that not just return 
the right answers but also yield explanations that re-
searchers, decision- makers, and even communities 
can understand. More transparent, these models will 
be, the more trust it will generate and better, wiser 
decisions we will make regarding how we keep and 
take care of our soil.

Third is the exciting field of federated learning, where 
the promise is to enable various organizations to coop-
erate with each other without compromising sensitive 
information. In the majority of cases, high-quality en-
vironmental data are valuable in other places or entities 
that cannot exchange it due to privacy or ownership 
concerns. Federated learning allows such participants 
to develop robust models cooperatively—never ex-
changing raw data. Such a strategy not only helps main-
tain data privacy but also produces more generalized,
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globally beneficial models that are coherent and 
compatible with different settings and geographies. 
These new developments—hybrid models, enhanced 
transparency, and shared use of data—can help push 
soil pollution research further. With the overcoming 
of current shortcomings and the embracing of these 
innovations, scientists will be better equipped to 
properly identify sources of contamination, facilitate 
effective cleanups, and make a meaningful contribu-
tion to environmental health and sustainability.

Proposed Direction for Research
In the future, the grand challenge in the next five to 
ten years for machine learning-driven source identi-
fication research of soil contamination is developing 
coupled, scalable, and understandable frameworks 
that bridge the divide between advanced technolo-
gy and on-the-ground environmental issues. Making 
the above vision a reality is to foster interdisciplinary 
collaborations that integrate machine learning, envi-
ronmental science, geospatial analysis, and policy 
scholars in codesigning both scientifically robust and 
socially effective approaches.

Future research must address real-world deployment 
of ML-based monitoring systems from conceptual 
models through pilot studies to in-place systems with 
the potential to deliver timely, actionable informa-
tion to environmental managers and regulators. Inte-
gration of the systems into existing policy structures 
will be necessary to ensure effective conversion of 
technological advances into effective pollution pre-
vention, remediation, and compliance enforcement.

This kind of realignment will require continuing in-
vestment in the development of standardized data in-
frastructure, open data sharing with privacy controls, 
and the creation of accessible tools for the benefit 
of stakeholders at all levels. By linking research to 
applied need and policy significance, the profession 
can make valuable contributions to soil health assur-
ance, ecosystem conservation, and sustainable land 
use in an increasingly dynamic world.
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