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Abstract

Chemotherapy is a drug treatment that uses powerful chemicals to kill fast-growing cancer cells. Cancer 
cells grow and multiply much more quickly than most cells in the body, and it is necessary to destroy the can-
cerous cells to prevent the loss of life. Many different chemotherapy drugs are available. Since cancer cells 
multiply rapidly, the interaction dynamics between the drugs and the cancer cells need to be understood and 
controlled. Bifurcation analysis is a powerful mathematical tool used to describe the dynamics of any pro-
cess. Several factors must be considered, and multiple objectives need to be met simultaneously. Bifurcation 
analysis and multiobjective nonlinear model predictive control (MNLMPC) calculations were performed on 
two chemotherapy models. The MATLAB program MATCONT was used to perform the bifurcation analy-
sis. The MNLMPC calculations were performed using the optimization language PYOMO in conjunction 
with the state-of-the-art global optimization solvers IPOPT and BARON.. The bifurcation analysis revealed 
branch points in both models. The branch points were beneficial because they enabled the multiobjective 
nonlinear model predictive control calculations to converge to the Utopia point, which is the best solution. 
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Background
Agur et al. developed mathematical models for can-
cer immunotherapy [1]. Robertson-Tessi et al. de-
veloped a mathematical model of tumor-immune 
interactions. Batmani et al. determined optimal drug 
regimens in cancer chemotherapy using a multi-ob-
jective approach [2,3]. Wang et al. introduced math-

ematical modeling in cancer drug discovery [4]. 
Lopez et al. developed a validated mathematical 
model of tumor growth including tumor-host interac-
tion, cell-mediated immune response, and chemother-
apy [5]. Liu et al. developed a mathematical model 
of cancer treatment by radiotherapy [6]. Roesch et 
al. performed modelling work involving lymphoma
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therapy [7]. Michor et al used mathematical model-
ling to improve cancer treatment [8]. Robertson-Tes-
si et al. developed a model for studying adaptive 
immunity on tumor response to chemotherapy and 
chemoimmunotherapy [9]. 

Pang et al. developed a mathematical model and ana-
lyzed tumor treatment regimens with pulsed immu-
notherapy and chemotherapy [10]. Feizabadi et al. 
modeled multi-mutation and drug resistance [11]. 
Heesterman et al. discussed mathematical models 
for tumor growth and the reduction of overtreatment 
[12]. Lestari et al. discussed the dynamics of a math-
ematical model of cancer cells with Chemotherapy 
[13]. Akhmetzhanov et al. modeled bistable tumor 
population dynamics to design effective treatment 
strategies[14]. Subramanian et al. studied glioblas-
toma growth using a 3D multispecies tumor model 
with mass effect [15]. Shu et al. performed mathe-
matical modeling and bifurcation analysis of pro- and 
anti-tumor macrophages [16]. Pang et al. performed 
a dynamic analysis of anti-tumor immune response 
[17]. Magee et al. compared immunotherapy agents 
with chemotherapy in solid organ tumors [18]. 

Abernathy et al. developed a mathematical model 
for tumor growth and treatment using virotherapy 
[19]. Yousef et al. performed mathematical mode-
ling of the immune-chemotherapeutic breast cancer 
treatment under some control parameters [20]. Song 
et al. developed a mathematical model of cell-me-
diated immune response to tumors [21]. Song et al. 
performed mathematical Modeling and Analysis of 
Tumor Chemotherapy [22]. Bashkirtseva et al. mod-
eled and analyzed tumor-immune interaction under 
chemotherapy and radiotherapy [23]. Alqahtani et al. 
developed a Effector–cell Interactions under chemo-
therapy model [24].

Bifurcation analysis and single-objective optimal 
control calculations were performed disjointly on 
chemotherapy problems. This work involves the 
development of an integrating mathematical frame-
work where multiobjective nonlinear model predic-
tive control calculations (MNLMPC) are performed 
in conjunction with bifurcation analysis on two 
chemotherapy models described in Song et al. and 
Alqahtani et al. [22,24].

This manuscript is organized as follows: First, the two 
models are presented, followed by a description of the 
numerical techniques (Bifurcation analysis and MN-
LMPC). The results, discussion, and conclusions are 
then presented. 

Chemotherapy Models
The chemotherapy models are very complex, with 
considerable differences in values of the variables and 
parameters involved. Hence, they are often scaled to 
make them more tractable. Two of the scaled models 
that will be used for the calculations are described in 
Song et al. and Alqahtani et al. [22,24]. 

Model 1 [22].
The scaled model variables are tumor cell population 
at time t (tval (t)), nval (t) the NK cell population, 
lval (t) for cytotoxic tval cell (CTLs) population, and 
uval(t) the amount of drug at the tumor site. Natural 
killer cells ( NK) are innate lymphocytes endowed 
with the ability to recognize and kill cancer cells. 

                                       (1)
s is the ratio of the product of the Immune cell killed 
and drug Influx of drug divided by the square of the 
CTL death rate. It is used as the bifurcation param-
eter and the control variable. More details of this 
model are in Song et al. [22].

Model 2 [24].
The scaled model equations are 

                                    (2)
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The effector cells are represented by eval (predator) 
and tumor cells by tval. The concentration of the 
chemotherapy drug is denoted mval. The amount 
of drug administered to the body is represented by 
vcont, which is used as the bifurcation parameter and 
the control variable.

Bifurcation Analysis
The MATLAB software MATCONT is used to per-
form the bifurcation calculations. Bifurcation analy-
sis deals with multiple steady-states and limit cycles. 
Multiple steady states occur because of the existence 
of branch and limit points. Hopf bifurcation points 
cause limit cycles . A commonly used MATLAB 
program that locates limit points, branch points, and 
Hopf bifurcation points is MATCONT Dhooge Gov-
earts, and Kuznetsov, Dhooge Govearts, Kuznetsov, 
Mestrom and Riet, [25, 26]. This program detects 
Limit points(LP), branch points(BP), and Hopf bi-
furcation points(H) for an ODE system. 

                              ( , )dx f x
dt

α=

                                      (3)                            
 nx R∈  Let the bifurcation parameter be a Since 
the gradient is orthogonal to the tangent vector, The 
tangent plane at any point  

1 2 3 4 1[ , , , ,.... ]nw w w w w w +=  
must satisfy

                                 0Aw =
                                     (4)
Where A is
                          [ / | / ]A f x f α= ∂ ∂ ∂ ∂  
                                     (5)

where   is the Jacobian matrix. 
For both limit and branch points, the matrix   [ / ]f x∂ ∂  
must be singular. The n+1th component of the tan-
gent vector 1nw +   = 0 for a limit point (LP)and for a 

branch point (BP) the matrix   
T

A
w
 
 
   

must be singular. 
At a Hopf bifurcation point, 

must be singular. At a Hopf bifurcation point,

                det(2 ( , )@ ) 0x nf x Iα =               (6)

@ indicates the bialternate product while   is the 
n-square identity matrix. Hopf bifurcations cause 
limit cycles and should be eliminated because limit 
cycles make optimization and control tasks very diffi-
cult. More details can be found in Kuznetsov [27-29].

Multiobjective Nonlinear Model Predictive Con-
trol 
Flores Tlacuahuaz et al. developed a multiobjec-
tive nonlinear model predictive control (MNLMPC) 
method that is rigorous and does not involve weight-
ing functions or additional constraints [30]. This pro-
cedure is used for performing the MNLMPC calcula-
tions.

Here  0

( )
i f

i

t t

j i
t

q t
=

=

∑
 
(j=12..n) represents the variables that 

need to be minimized/maximized simultaneously for 
a problem involving a set of ODE

                            ( , )dx F x u
dt

=

                                 (7)

ft
 being the final time value, and n the total number 

of objective variables and . u the control parameter. 
This MNLMPC procedure first solves the single ob-
jective optimal control problem independently opmiz-

ing each of the variables 0

( )
i f

i

t t

j i
t

q t
=

=

∑
 
individually. The 

minimization/maximization of   0

( )
i f

i

t t

j i
t

q t
=

=

∑
 
will lead to 

the values   . Then the optimization problem that will 
be solved is

                      0
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=
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                                      (8)
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This will provide the values of u at various times. 
The first obtained control value of u is implemented 
and the rest are discarded. This procedure is repeated 
until the implemented and the first obtained control 
values are the same or if the Utopia point where 

( 
0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑   for all j) is obtained.

Pyomo Hart et al. is used for these calculations [31]. 
Here, the differential equations are converted to a 
Nonlinear Program (NLP) using the orthogonal col-
location method The NLP is solved using IPOPT and 
confirmed as a global solution with BARON [32, 
33].

The steps of the algorithm are as follows 

1.	 Optimize  
0

( )
i f

i

t t

j i
t

q t
=

=

∑  and obtain  *
jq  at various 

time intervals ti. The subscript i is the index 
for each time step. 

2.	 Minimize  
0

* 2

1
( ( ( ) ))

i f

i

t tn

j i j
j t

q t q
=

=

=

−∑ ∑
 
and get the 

control values for various times.
3.	 Implement the first obtained control values 
4.	 Repeat steps 1 to 3 until there is an insignifi-

cant difference between the implemented and 
the first obtained value of the control varia-
bles or if the Utopia point is achieved. The 

Utopia point is when  
0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑  for all 
j. 

Sridhar (2024a)[34] proved that the MNLMPC cal-
culations to converge to the Utopia solution when 
the bifurcation analysis revealed the presence of lim-
it and branch points . This was done by imposing the 
singularity condition on the co-state equation (Up-

reti, 2013)[35]. If the minimization of  1q  lead to the 

value   *
1q  and the minimization of 2q  lead to the 

value  *
2q  The MNLPMC calculations will minimize 

the function  

* 2 * 2
1 1 2 2( ) ( )q q q q− + −  The multiobjective optimal 

control problem is

* 2 * 2
1 1 2 2min ( ) ( ) ( , )dxq q q q subject to F x u

dt
− + − =

                                    (9)

Differentiating the objective function results in

* 2 * 2 * * * *
1 1 2 2 1 1 1 1 2 2 2 2(( ) ( ) ) 2( ) ( ) 2( ) ( )

i i i

d d dq q q q q q q q q q q q
dx dx dx

− + − = − − + − −
                                                     

                                    (10)

The Utopia point requires that both *
1 1( )q q−

and *
2 2( )q q−  are zero. Hence

                 
* 2 * 2

1 1 2 2(( ) ( ) ) 0
i

d q q q q
dx

− + − =

                                     (11)
the optimal control co-state equation (Upreti; 2013) 
is

* 2 * 2
1 1 2 2( ) (( ) ( ) ) ; ( ) 0i x i i f

i

d d q q q q f t
dt dx

λ λ λ= − − + − − =

                                     (12)

iλ  is the Lagrangian multiplier. ft  is the final time. 
The first term in this equation is 0 and hence

                   ( ) ; ( ) 0i x i i f
d f t
dt

λ λ λ= − =

                                      (13)

At a limit or a branch point, for the set of ODE

( , )dx f x u
dt

=
 xf  is singular. Hence there are two 

different vectors-values for [ ]iλ  where   ( ) 0i
d
dt

λ >
 

and  ( ) 0i
d
dt

λ <  . In between there is a vector [ ]iλ



J. of Clin Tri Case Reports  Vol:1,1. Pg:5

 Review Article Open Access

where  ( ) 0i
d
dt

λ =  . This coupled with the boundary 

condition   ( ) 0i ftλ =
 will lead to  [ ] 0iλ =  This 

makes the problem an unconstrained optimization 
problem, and the only solution is the Utopia solution. 

Hopf bifurcations cause unwanted oscillatory be-
havior and limit cycles. The tanh activation function 
(where a control value u is replaced by )   is com-
monly used in neural nets Dubey et al. Kamalov et 
al. and Szandała,et al. and optimal control problems 
to eliminate spikes in the optimal control profile [36-
39]. Hopf bifurcation points cause oscillatory behav-
ior. Oscillations are similar to spikes, and the results 
in demonstrate that the tanh factor also eliminates 
the Hopf bifurcation by preventing the occurrence 
of oscillations [40]. explained with several examples 
how the activation factor involving the tanh func-
tion successfully eliminates the limit cycle causing 
Hopf bifurcation points. This was because the tanh 
function increases the time period of the oscillatory 
behavior, which occurs in the form of a limit cycle 
caused by Hopf bifurcations.

Results and Discussion
The bifurcation analysis performed with MATCONT 
on model 1 revealed a branch point at (nval, lval, 
tval, uval, s)= ( 0,0, 0, 10, 1 ). The bifurcation param-
eter is s. This branch point BP resulted in 2 solution 
branches as shown in Fig. 1. 

Figure 1: Bifurcation Diagram (Model 1)

For the MNLMPC calculation, with s is the control 

variable,   
0

( )
i f

i

t t

j i
t

tval t
=

=

∑

 
was minimized, leading to a 

value of 0 and   0

( )
i f

i

t t

j i
t

nval t
=

=

∑
 
was maximized resulting

ing in a value of 20. The overall optimal con-
trol problem will involve the minimization of  

0 0

2 2( ( ) 0) ( ( ) 20)
i f i f

i i

t t t t

j i j i
t t

tval t nval t
= =

= =

− + −∑ ∑
 

 subject to 
the ODE describing Model 1. This minimization re-
sulted in the Utopia point (0) confirming the analysis 
of Sridhar (2024a)[34], which showed that the pres-
ence of a branch point enables the MNLMPC calcula-
tions to reach the best possible (Utopia) solution. The 
first of the control variable is implemented and the 
rest are discarded. The process is repeated until the 
difference between the first and second values of the 
control variables are the same. This MNLMPC con-
trol value was 0.8409. The various MNLMPC profiles 
are shown in figure 2. 

Figure 2: eval, nval , tval (MNLMPC model 1

The obtained control profile of s exhibited a lot of 
noise (figure. 3 ). 

Figure 3: s profile (MNLMPC model 1)
This was remedied using the Savitzky-Golay Filter. 
The smoothed-out version of this profile is shown in 
Figure.4. 
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Figure 4: s profile with Savitsky Golay filter MN-
LMPC model 1)

In model 2, a branch point was obtained at (eval, tval, 
mval, vcont) = ( 0.061719 0.0, 0.003498, 0.028617 ). 
This is shown in Figure. 5. 

Figure 5: Bifurcation Diagram (Model 2)

For the MNLMPC calculation, using vcont is the con-

trol variable, 0

( )
i f

i

t t

j i
t

tval t
=

=

∑
   and  0

( )
i f

i

t t

j i
t

eval t
=

=

∑
 are both 

minimized, each leading to a value of 0 The overall 
optimal control problem will involve the minimiza-

tion of   0 0

2 2( ( ) 0) ( ( ) 0)
i f i f

i i

t t t t

j i j i
t t

tval t eval t
= =

= =

− + −∑ ∑
 
sub-

ject to the ODE describing Model

2. This minimization resulted in the Utopia point (0) 
confirming the analysis of Sridhar, which showed 
that the presence of a branch point enables the 
MNLMPC calculations to reach the best possible 
(Utopia) solution [34]. The first of the control 
variable is implemented and the rest are discarded. 
The process is repeated until the difference between 
the first and second values of the control variables 
are the same. This MNLMPC control value was 
.2385. The various MNLMPC profiles are shown in 
figure, 6. 

 
Figure 6: eval, mval, tval profiles MNLMPC model 2)

The obtained control profile of s exhibited noise 
(figure. 7 ).

Figure 7: vcont profile MNLMPC model 2)

This was remedied using the Savitzky-Golay Filter. 
The smoothed-out version of this profile is shown in 
Figure, 8.

Figure 8: vcont profile with Savitsky Golay filter 
MNLMPC model 2)

Although one of the branches is in an infeasible region 
(Figure. 2) 
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Figure 2: eval, nval , tval (MNLMPC model 1)
the branch point in the feasible region indicates a 
singularity of the Jacobian matrix. This singularity 
causes the MNLMPC calculations to converge to the 
Utopia point. 

Conclusions
Multiobjective nonlinear model predictive control 
calculations were performed along with bifurcation 
analysis on scaled chemotherapy models. The 
bifurcation analysis revealed the existence of brach 
points that produced different solution branches 
originating from a singular point. The presence of 
a branch point is very beneficial as it caused the 
multiojective nonlinear model predictive calculations 
to converge to the Utopia point. , which is the best 
possible solution. 
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