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Abstract

This narrative review explores the therapeutic shift in Type 2 Diabetes Mellitus (T2DM) management from
single-receptor agonists to dual-agonist therapies. While selective GLP-1 receptor agonists like semaglutide
have served as a primary treatment standard for metabolic control, the emergence of tirzepatide a "Tw incre-
tin" targeting both GIP and GLP-1 receptors-presents a new clinical advantage. By simultaneously activating
these distinct metabolic pathways, tirzepatide achieves a synergistic effect that enhances insulin secretion and
improves adipose tissue regulation beyond the capabilities of single-hormone agents. Clinical comparisons
indicate that tirzepatide provides superior reductions in blood glucose and body weight, helping a greater
proportion of patients achieve near-normal metabolic levels. Furthermore, the dual-agonist profile shows
promising improvements in cardiovascular markers and lipid metabolism with a safety profile characterized
primarily by transient gastrointestinal side effects. This paper synthesizes the mechanistic benefits of dual ag-
onism and evaluates its potential to redefine the gold standard for intensive T2DM therapy.
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Introduction

The global burden of Type 2 Diabetes Mellitus
(T2DM) continues to rise, with an estimated 537
million adults affected-representing roughly 10.5%
of the world’s adult population [1,2]. The necessi-
ty to develop more effective therapeutic strategies
for such a complex disease cannot be overstated.
For much of the latter half of the 20th century, par-
ticularly from the 1970s through the 1990s, T2DM
management was predominantly glossocentric,
targeting stabilization of glycaemic indices such
as fasting plasma glucose, urine glucose, and later
HbAlc [3,4]. Modern treatments not only focus on
glycaemic control but also on weight management
and the reduction of cardiovascular risks [5]. A key
element in this modern approach is utilizing the ef-
fect of incretin, an insulinotropic response activated
by gut hormones after oral glucose intake. Therapies
such as semaglutide, a single-agonist that targets
the Glucagon-like Peptide-1 (GLP-1) receptor, has
been labelled as the gold standard treatment class for
many years. These agents effectively lower HbAlc
by stimulating glucose-dependent insulin secretion,
suppressing glucagon, and slowing gastric emptying
to increase satiety [6].

Tirzepatide is the first approved agent that can target
both GLP-1 and Glucose-dependent Insulinotropic
Polypeptide (GIP) receptors. Activating both recep-
tors simultaneously generates a synergistic effect
and is believed to have a superior therapeutic out-
come compared to using either hormone alone. GIP
and GLP-1 have overlapping but distinct properties
on insulin and glucagon secretion. However, GIP is
more pronounced in regulating adipose tissue and
bone metabolism [7].

Although tirzepatide has demonstrated greater effi-
cacy in glycemic and weight management in clini-
cal trials, several key aspects remain unclear in the
current literature [8]. A detailed explanation of the
specific benefits and mechanisms of dual agonism is
much needed as most literature focuses on general
outcomes. The purpose of this review is to synthe-
size existing knowledge on “dual-agonist advantag-
es”, verifying if combined action is more beneficial
than single action agent.

What is GIP and GLP-1 and How Do They Work?
Glucose-dependent insulinotropic polypeptide (GIP)
and peripheral glucagon-like peptide-1 (GLP-1) are
incretins released from the gastrointestinal tract (GIT)
in response to oral glucose or nutrient intake, while
central GLP-1 is produced by brainstem neurons
independently of gut stimuli. Both hormones col-
lectively mediate the incretin effect, GIP is secreted
from K-cells located in the duodenum and proximal
jejunum, whereas peripheral GLP-1 is secreted from
L-cells found in the distal ileum and colon. The plas-
ma half-life of endogenous GIP (1-42) is limited by
dipeptidyl peptidase-4 (DPP-4) to approximately 7
minutes, an enzyme that degrades GIP into an inactive
molecule GIP (3-42). Native GLP-1 is also vulnerable
to DPP-4, and is broken down within minutes upon
contact with the enzyme [9-11]. Neural stimulation
also plays a role in peripheral GLP-1 secretion, which
can be explained by the morphology of the L-cells.
These L-cells have two surfaces, with the apical sur-
face sensing nutrients and the basolateral surface in-
volving neural and endocrine signaling through vas-
cular activity [11].

Once both incretins enter the circulation, they bind
to their distinct class B G protein-couple receptors
(GPCR), GIPR and GLP-1R, to activate G protein-me-
diated signalling cascades. G is the major G protein
that is coupled by both GPCRs, leading to stimulation
of adenylate cyclase. Afterwards, increasing intracel-
lular cyclic adenosine monophosphate (cCAMP) initi-
ates protein kinase A (PKA) and exchange protein di-
rectly activated by cAMP 2 (EPAC2). This signalling
pathway facilitates glucose-dependent insulin secre-
tion by promoting B-cell membrane depolarization,
calcium influx, and insulin granule exocytosis. These
shared Gs-cAMP-PKA/EPAC2 cascades not only
drive acute insulin release but also underpin longer-
term B-cell preservation, providing a mechanistic
foundation for dual GIPR/GLP-1R agonism in agents
like tirzepatide, which elicits synergistic cAMP eleva-
tion in B-cells beyond either incretin alone.

Moreover, GIP and peripheral GLP-1 share common
actions that are beneficial for pancreatic B-cell. They
support B-cell survival, reduce apoptosis, and enhance
proliferation by activating the CREB, Akt/PKB, and
ERK pathways [12]. For instance, GIP binding to
GIPR elevates cAMP/PKA to phosphorylate nuclear

J. of Advanced Diabetes Research

Vol:2,1, Pg:2



Research Article Open Access

CREB and activate Akt/PKB, which phosphorylates.

Foxol to downregulate pro-apoptotic Bax and sup-
press mitochondrial Bad/Beimel translocation via
p38 MAPK/INK inhibition under glucolipotoxicity
or ER stress conditions. Similarly, GLP-1 activates
Akt/PKB (often PI3K-dependent) to upregulate an-
ti-apoptotic Bcl2/IAP2 via NFKB and reduces ER
stress in human islets, while both incretins induce
cyclin D1 transcription to promote G1/S-phase pro-
gression through PKA/MEK and EGFR transacti-
vation. These overlapping protective effects expand
B-cell mass, countering the progressive dysfunction
in type 2 diabetes, and synergize in dual agonists like
tirzepatide to improve HOMAZ2-B-derived B-cell
function by 93-163% [13].

Although possessing these protective characteristics,
they differ in glucagon regulation. GLP-1 inhibits
glucagon secretion in a glucose-dependent man-
ner, via direct effects on pancreatic alpha cells and
indirect effects through somatostatin release from
delta-cells. A small portion of GLP-1R found on
pancreatic alpha cells are responsible for the direct
effect. Shortly after the activation of PKA by GLP-
IR, voltage gated calcium channels are suppressed
in order to down regulate glucagon exocytosis. On
the other hand, GIP raises glucagon secretion main-
ly during fasting or hypoglycemia, owing to an in-
creased GIPR gene promoter activity that makes
alpha cells more sensitive to GIP [10,14]. This glu-
cose-contextual divergence GIP stimulating a-cells
at low glucose while GLP-1 suppresses across hy-
perglycaemia allows dual agonism to balance gluca-
gon appropriately, avoiding hyperglucagonemia in
fed states while preserving counter regulation during
hypoglycaemia [10,13,15].

In terms of energy and satiety modulation, GLP-1
coordinates peripheral and central systems to delay
gastric emptying, suppress food intake, and amplify
satiety sensation. The peripheral system communi-
cates with the central system via the vague nerve,
specifically vagal afferent in the nodose ganglion
that activate nucleus tractus solitarius (NTS) neurons
in the brainstem [16]. Subsequently, the hypothala-
mus and brainstem the “command center” and “vital
center” known for their role in appetite control inte-
grate the effect of GLP-1. Early satiety reduces meal

size and total caloric intake, which ultimately favors
weight loss. Besides, central GLP-1 targets the mes-
olimbic reward system, insular cortex, and putamen to
facilitate the hedonic control of food intake [17]. This
impact is mostly relevant in obese patient, where dys-
regulated reward-based food consumption contributes
heavily on excessive caloric increase [18].

Historically, the role of GIP was understood to pro-
mote postprandial lipid uptake and triglyceride stor-
age in adipocytes, but recent studies demonstrated that
GIP also participates in appetite regulation [19,20].
Resembling GLP-1’s effect on appetite, GIP has its
receptors widely distributed in regions of the central
nervous system which are crucial for appetite and en-
ergy balance. These command centers for metabolic
regulation that GIPRs strategically distributed in are
the paraventricular hypothalamus (PVH), arcuate hy-
pothalamus (ARH), and dorsomedial hypothalamus
(DMH) [10,11,21].

DPP-4 inhibitors prevent the rapid enzymatic degra-
dation of endogenous GLP-1 and GIP which extends
their hormonal activity. Conversely, GLP-1R agonist
therapies (GLP-1RAs), such as semaglutide and tirze-
patide, are pharmacologically modified analogs resist-
ant to DPP-4.

In subjects with obesity and T2DM, the secretion and
activity of endogenous GLP-1 are decreased, while
GIP remains partially active with diminished B-cell
insulinotropic function and preserved glucagon tropic
and adaptogenic effects [22]. These complementary
yet divergent properties of GIP and GLP-1 provide a
robust pathophysiological foundation for drug devel-
opment. This mechanistic diversity explains why dual
receptor agonists are able to enhance the quality of
T2DM management [10,15].

Pharmacology of Tirzepatide and Semaglutide

Semaglutide on the other hand has a half-life around 7
days (approximately165-186 hours), which also ena-
bles once weekly subcutaneous injection [22-25]. This
slightly longer half-life comparing to Tirzepatide is
achieved through fatty acid acylation and stable albu-
min binding. At the receptor level, tirzepatide presents
an unbalanced dual-agonist profile [26]. Binding and
functional studies indicated that tirzepatide parallels
endogenous GIP’s affinity at GIPR while exhibiting
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5-fold lower affinity at GLP-1R compared to native
GLP-1. This GIPR-biased property maximizes the
benefits of GIP while maintaining moderate GLP-1
effects for superior metabolic outcomes [22-25].

Concurrent GIPR/GLP-1R activation promotes
glycaemic control by eliciting the first and second
phases of glucose-stimulated insulin secretion and
suppressing inappropriate glucagon secretion. Fur-
thermore, tirzepatide showed its benefits on B-cell
processing capacity and insulin sensitivity/resistant
are beyond what selective GLP-1 receptor agonists
achieve. Both agents allow once-weekly subcutane-
ous injection while tirzepatide has a starting dose of
2.5mg for the first 4 weeks [22,25,27]. After the ini-
tial period, the dosage is raised to Smg once weekly
and a maximum of 15mg weekly dose if additional
glycemic management is required. Semaglutide fol-
lows a similar titration pattern, starting at 0.25 mg
once weekly for 4 weeks, increasing to 0.5 mg, and
may be further titrated up to 2 mg weekly if needed.

Pharmacokinetic studies in healthy individuals and
T2DM patients show tirzepatide exhibits dose-pro-
portional concentrations across a wide range [27,28].
Tirzepatide reaches its Tax around 8-72 hours post
subcutaneous administration with approximately
80% absolute bioavailability. The steady state was
achieved after about 4 weeks of weekly dosing. The
compound is metabolized through proteolytic deg-
radation of the peptide backbone and [ oxidation
of its fatty acid side chain. Its primary elimination
route is via urine and faces with no unchanged par-
ent drug detected. Semaglutide demonstrates com-
parable traits: dose-proportional PK, Tax of 1-3 days
(24-72 hours), 89% bioavailability, steady-state in
4-5 weeks, identical metabolism (proteolytic cleav-
age and beta-oxidation of fatty acid side chain), and
elimination via urine (~3% unchanged) and faces
[29-31].

Neither drug's pharmacokinetics is significantly in-
fluenced by age (18-80+ years), gender, race/ethnic-
ity, body weight (within 40-160 kg studied ranges),
mild-moderate renal/hepatic impairment, or upper
GI disease. Dedicated studies confirm no clinically
meaningful changes even in ESRD patients on dialy-
sis (eGFR <15, n=8), though data for non-dialysis se-
vere renal impairment (eGFR 15-30 mL/min/1.73 m?)

and severe hepatic impairment (Child-Pugh C) remain
more limited, with no dose adjustment recommend-
ed, though caution/monitoring is advised in ESRD
[32,33].

Head-to-Head Efficacy Comparison in SURPASS-2
SURPASS-2 was a trial designed to compare the clini-
cal outcomes of semaglutide (1.0mg once weekly) and
tirzepatide (Smg, 10mg, and 15mg once weekly) in
T2DM patients(8). The trial concluded that tirzepati-
de, at all dosages, outperformed semaglutide in glyce-
mic control over a 40-week period. The three groups
that received tirzepatide showed a dose-dependent re-
duction in HbAlc by 2.01%, 2.24%, and 2.30%, with
their original mean baseline HbAlc of 8.3%. In con-
trast, semaglutide was only able to achieve a 1.86%
reduction in HbAlc. These results were statistically
significant with a p-value of less than 0.02 across all
dose comparisons. It is worth noting that when SUR-
PASS-2 trial was conducted, 1.0 mg once weekly was
the highest maintenance dose approved for T2DM
glycemic control, whereas semaglutide is now avail-
able at 2.0mg once weekly for the same purpose [34].

Tirzepatide provided numerically and statistically
greater reductions in HbAlc than semaglutide. Tirze-
patide accomplished a treatment difference by 0.15%
at the lowest dose, 0.39% at the mid-dose, and 0.45%
at the highest dose [35]. All three tested doses of tirze-
patide were not only non-inferior but statistically su-
perior to semaglutide in regard to glycemic regulation.
To establish the superiority of tirzepatide, a subgroup
analysis was conducted among Hispanic and Latino
participants [36]. Reductions in HbAlc were signifi-
cantly greater for all tirzepatide doses compared with
semaglutide (all p<0.027), and the gap in efficacy re-
mained consistent while the highest tirzepatide dose
reached even more pronounced reductions, including
a treatment difference of —0.54% in HbAlc (p<0.027)
and substantially greater weight loss (—10.5 kg vs 5.6
kg, p<0.001).

Holding the position of superior glycaemic control
over semaglutide, tirzepatide enables patients to reach
both standard and intensive glycaemic targets more
efficiently [8]. With the traditional clinical goal of
HbAlc <7.0% for T2DM management, tirzepatide
had an achievement rate of 82% with the Smg dose
and 86% at both the 10 mg and 15 mg doses [37].
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On the other hand, 75% to 79% of participants on
semaglutide 1.0 mg achieved this clinical goal. Here,
a dose-dependent relationship is again established,
with tirzepatide consistently outpacing semaglutide
in clinical efficacy [8]. Normoglycemia, or euglyce-
mia, is defined as an HbAlc level below 5.7%. This
ideal therapeutic goal was achieved in 27% to 51%
of patients treated with tirzepatide, whereas 19% of
patients on semaglutide reached euglycemia (p <
0.001). Tirzepatide enabled nearly half of the patients
on the 15 mg dose to regain euglycemia, providing
a solid proof of the potent synergistic effect of dual
receptor agonism in restoring metabolic balance [8].

Regarding the safety profile of tirzepatide and sema-
glutide, both demonstrated excellent profiles with
respect to clinically significant hypoglycemia (blood
glucose levels below 54 mg/dL). The incidence of
such events remained remarkably low across all co-
horts, occurring in 0.6%, 0.2%, and 1.7% of patients
in the tirzepatide 5 mg, 10 mg, and 15 mg groups,
respectively, compared to just 0.4% in the semaglu-
tide 1.0 mg group(8). Even though the highest dose
of tirzepatide (15 mg) showed nearly a 4-fold higher
risk than semaglutide, none of the episodes required
third-party assistance. Compared to insulin and sul-
fonylurea therapies, these hypoglycemic incidents
occurred far less frequently [38,39]. Insulin glargine
showed 13.5-16.6% events in SURPASS-4 while sul-
fonylureas had around 20-30% severe events yearly
in UKPDS 10-50 times higher than tirzepatide or
semaglutide [40,41]. This modest increase in events
seen with higher-dose tirzepatide remains a clinically
acceptable compromise, considering its superior ef-
fects on both glycaemic control and weight reduction,
and its glucose-dependent mechanism of action [8].

It is crucial to mention that the participants in the
SURPASS-2 trial had a mean diabetes duration of
8.6 years. A relatively short diabetes duration can in-
dicate significantly preserved -cell function in many
participants. This specific population made high rates
of normoglycemia (HbAlc <5.7%) achievable, as a
prolonged history of disease correlates with B-cell
exhaustion [42].

Moreover, all participants were on a stable back-
ground of metformin monotherapy. This allowed re-
searchersinthe SURPASS-2 trial toisolate the glucose

dependent mechanisms of tirzepatide and semaglutide
[8]. This uniform background eliminated confound-
ing variables from other medications and explains the
exceptionally low hypoglycemia rates reported across
all arms. While these characteristics make the results
highly generalizable to the typical patient failing first-
line metformin therapy, caution should be used when
extrapolating these impressive findings particularly
the rates of normoglycemia to more complex clinical
scenarios, such as patients with advanced diabetes du-
ration (>15 years) or those already requiring insulin
therapy [8].

Comparative Weight Management and Cardio-
metabolic Outcome

Obesity is one of the strongest risk factors for T2DM,
accounting for 60% to 90% of T2DM cases [43]. Be-
yond tirzepatide’s potent glyceric effect, it also demon-
strated a significant dose dependent advantage over
semaglutide in terms of total weight reduction. From
a mean baseline body weight of 93.7kg, participants
who underwent semaglutide therapy experienced an
average weight loss of 6.7% (approximately 5.7 kg).
Tirzepatide achieved mean wight reduction of 7.6 kg
(7.8%), 9.3 kg (9.8%), and 11.2 kg (11.4%) according
to the 5 mg, 10mg, and 15 mg dosage groups. In this
trial, the lowest dose of tirzepatide outperformed the
standard dose of semaglutide, with the 15mg dose ex-
erting nearly double the weight loss of semaglutide [§8].

An analysis of patients reaching specific weight loss
milestones was conducted to further illustrate the clin-
ical impact of both agents in the SURPASS-2 trial.
Approximately 65% to 80% of participants across the
three doses of tirzepatide achieved the clinically sig-
nificant threshold of 5% weight loss, compared to 54%
for semaglutide. The 15% weight loss benchmark was
accomplished by 36% of the 15 mg tirzepatide group
and 8% of the semaglutide group. Moreover, a com-
posite "triple goal" reaching an HbAlc of < 6.5%, >
10% weight loss, and without severe hypoglycemia
was met by 32% to 60% of tirzepatide-treated pa-
tients, compared to just 22% of those treated with
semaglutide [25].

Beyond weight and glycemic control, tirzepatide also
demonstrated a robust influence on cardiovascular
and metabolic markers [8]. Systolic blood pressure
decreased by 4.8 to 6.5 mmHg across the tirzepatide
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doses, a more pronounced drop than the 3.6 mmHg
reduction seen with semaglutide. Additionally, tirze-
patide led to greater reductions in triglycerides and
very-low-density lipoprotein (VLDL), while si-
multaneously increasing High-density lipoprotein
(HDL). Interestingly, while both drugs had minimal
and comparable effects on LDL cholesterol, the su-
perior impact of tirzepatide on the broader lipid pan-
el suggests a more comprehensive improvement in
insulin sensitivity and metabolic health [8].

The mechanistic foundation for this superior per-
formance likely lies in the synergistic interplay be-
tween GLP-1 and GIP receptor agonism. In addition
of GLP-1’s role in appetite suppression and delayed
gastric emptying, GIP incorporated its ability in fat
deposition and energy expenditure regulation [27].

Adverse Events and Patient Experience
Tolerability is a major concern in drug selection for
all patients; it is also crucial to note down any ad-
verse events after drug administration. In case of
tirzepatide, gastrointestinal related adverse effects
were the most frequently observed following a clear
dose-dependent trajectory. For the 10 mg and 15 mg
doses of tirzepatide, nausea was reported in approxi-
mately 19-20% and 22% of participants, respective-
ly. The semaglutide group showed a relatively lower
incident rate of 18%. Diarrhea occurred in 12% of
those with semaglutide, whereas 14—15% of those on
the 10 mg dose and 16% on the 15 mg dose of tirze-
patide. Rates of vomiting followed a similar pattern,
affecting roughly 8% of patients on tirzepatide 10 mg
and 10% on the 15 mg dose, compared to 8% in the
semaglutide cohort. Despite these figures, the overall
incidence of gastrointestinal distress was remarkably
similar between the two therapies, with 40-46% of
all tirzepatide-treated patients experiencing at least
one such event versus 41% for semaglutide [8].

Generally, most complications reported fell into the
category of mild-to-moderate in terms of severity
and were concentrated during the initial dose-esca-
lation phase. Less than 3% of participants discontin-
ued tirzepatide specifically due to nausea, vomiting,
or diarrhoea. While severe gastrointestinal events
were exceptionally rare and typically transient, a
clear dose- dependent pattern was observed in over-
all tolerability. Discontinuation rates due to adverse

events were higher among patients receiving tirzepati-
de recorded at 3.0% to 4.3% for the 5 mg dose, 4.0%
to 7.1% for the 10 mg dose, and 6.2% to 8.5% for the
15 mg dose compared to a 3.0% to 4.1% rate in the
semaglutide group. Despite the 15 mg dose showing
approximately twice the discontinuation rate of sema-
glutide, the low absolute numbers and generally man-
ageable symptoms support a favourable safety profile
for tirzepatide, notwithstanding the marginally higher
gastrointestinal burden at peak doses [8].

In addition to gastrointestinal effects, the broad-
er safety profile of these therapies includes rare but
clinically relevant concerns such as pancreatitis, gall-
bladder disorders, and hypersensitivity. Pancreatitis
rates remain exceptionally low across the board, with
occurrences reported in <1% of participants for both
medications. Meta-analyses of tirzepatide indicate no
statistically significant increase in pancreatitis risk
compared to control groups (RR 1.46, 95% CI 0.59-
3.61), including basal insulin, selective GLP-1RAs
(dulaglutide/semaglutide), and placebo(44).Cases in-
volving semaglutide were typically associated with a
prior history of biliary disease or gallstones. Similar-
ly, severe allergic reactions and systemic hypersensi-
tivity are uncommon. While minor injection site re-
actions were noted in approximately 1.9% to 4.5% of
tirzepatide users-a rate slightly higher than the 0.2%
observed with semaglutide-documented instances of
anaphylaxis or angioedema remain isolated case re-
ports rather than frequent trial outcomes [8].

A more distinct differentiation between the two agents
emerges regarding gallbladder health. While the in-
cidence of gallbladder-related disorders remains gen-
erally low, meta-analyses suggest that semaglutide
may carry a higher risk, with a 2.6-fold increase in
the likelihood of cholelithiasis compared to placebo.
In the STEP trials, gallbladder events occurred in up
to 3.0% of semaglutide patients, whereas tirzepatide
showed no significant biliary risk in comparable sys-
tematic reviews. Specifically, cholelithiasis rates for
tirzepatide remained below 1.4% across all doses,
which is nearly identical to placebo levels. This risk
for both drugs appears to be a function of dose and the
velocity of weight loss rather than a direct toxic ef-
fect, suggesting that patients achieving rapid metabol-
ic changes should be monitored for biliary symptoms
regardless of their assigned therapy [8].
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Discussion

The comparative analysis provided in this narra-
tive review underscores a significant evolution in
the pharmacological management of Type 2 Diabe-
tes Mellitus (T2DM). The transition from selective
GLP-1 receptor agonists, like semaglutide, to dual
GIP/GLP-1 receptor agonists, such as tirzepatide,
represents a move toward more comprehensive met-
abolic restructuring. The primary finding of this syn-
thesis is that tirzepatide’s "Tw incretin" mechanism
which simultaneously leverages the insulinotropic
and glucagon tropic properties of GIP alongside the
potent anorexigenic effects of GLP-1 consistently
outperforms the previous "gold standard" in avail-
able comparative data on both glyceric control and
weight reduction.

The clinical superiority of tirzepatide, as evidenced by
the SURPASS-2 trial data, is particularly striking in
its ability to achieve normoglycemia (HbAlc <5.7%)
in nearly half of patients on the 15 mg dose—a mile-
stone previously difficult with single-agonist thera-
pies. Achieving an HbAlc below 5.7% in nearly half
of the patients on the 15 mg dose is a milestone that
was previously difficult to reach with single-agonist
therapies. This level of glycemic normalization car-
ries profound long-term implications, including po-
tential T2DM remission trajectories and substantial
microvascular risk reduction (retinopathy, nephropa-
thy, neuropathy), as evidenced by UKPDS legacy ef-
fects where each 1% HbA 1c¢ lowering yields 21-37%
relative risk reductions [45-47]. This suggests that
the GIP component of tirzepatide does not merely
serve as a supplementary hormone but acts synergis-
tically to enhance insulin sensitivity and B-cell pro-
cessing capacity beyond the scope of GLP-1 activa-
tion alone. Furthermore, the dose-dependent nature
of these results indicates that tirzepatide allows for a
highly tailorable treatment approach, where the 5 mg
dose can match or exceed the efficacy of semaglutide
1.0 mg, while higher doses push the boundaries of
metabolic restoration.

Weight management remains a cornerstone of T2DM
therapy, and the data presented here confirms that
tirzepatide offers a distinct advantage in this domain.
The 15 mg dose achieving nearly double the weight
loss of semaglutide 1.0 mg (11.4% vs 6.7%) high-
lights the importance of GIP in regulating adipose

tissue metabolism and central energy balance. This
weight-loss efficacy is coupled with superior improve-
ments in systolic blood pressure and lipid profiles
specifically triglycerides and VLDL suggesting tirze-
patide provides a more robust cardioprotective and
insulin-sensitizing environment than selective GLP-1
RAs, though definitive cardiovascular outcome data
directly comparing tirzepatide and semaglutide re-
main unavailable to date. However, this increased po-
tency necessitates a careful evaluation of tolerability.
While the gastrointestinal adverse event profiles are
remarkably similar in nature (primarily mild-to-mod-
erate nausea and diarrhea), tirzepatide does carry a
marginally higher burden at peak doses. The doubling
of discontinuation rates at the 15 mg dose (8.5% com-
pared to 4.1% for semaglutide) is a critical considera-
tion for clinicians. Nevertheless, the fact that less than
3% of patients are discontinued specifically due to
GI distress suggests that these symptoms are largely
manageable with proper titration. Moreover, the po-
tentially lower biliary risk associated with tirzepatide
despite more rapid weight loss provides an additional
safety incentive for its use.

Ultimately, while the SURPASS-2 population repre-
sented an ideal "sweet spot" of patients with preserved
$\beta$-cell function, the findings suggest that du-
al-agonist therapy is redefining the therapeutic ceiling
for T2DM. Tirzepatide’s ability to "normalize" meta-
bolic markers rather than just "manage" them marks
a paradigm shift toward intensive, early intervention
that could potentially alter the long-term trajectory of
the disease.

Gaps in the literature and future directions

Despite the robust clinical outcomes demonstrated
by tirzepatide and semaglutide, several critical lit-
erature gaps persist, particularly regarding the "GIP
receptor paradox" and the precise mechanistic contri-
bution of dual agonism in humans. Current research
indicates that tirzepatide improves insulin sensitivity
through weight-independent pathways-estimated to
account for nearly 30% of its glycaemic effect—yet
tissue-specific studies in human adipose and central
nervous system (CNS) tissues are needed to confirm if
these effects stem from direct GIP receptor activation
or functional antagonism [48,49]. Furthermore, while
real-world data from 2025 suggests comparable cardi-
ovascular protection (HR 1.06), a significant evidence
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gap remains as no randomized, head-to-head trial
has directly assessed long-term major adverse car-
diovascular events (MACE) between tirzepatide and
semaglutide; results from SURPASS-CVOT only
compare tirzepatide to dulaglutide, leaving the ques-
tion of incremental dual-agonist cardio protection
unanswered [50]. Future research directions must
prioritize 3—5-year durability studies to track f-cell
preservation, stratified analyses to identify "respond-
er phenotypes" based on baseline insulin resistance,
and mechanistic investigations into why tirzepatide
appears to carry a lower biliary risk (2.6-fold low-
er cholelithiasis rates vs semaglutide in obese adults
from SURMOUNT/STEP trials) despite achieving
more rapid weight loss than semaglutide [51,52].

Conclusions

In summary, the findings from the SURPASS-2 tri-
al underscore a significant shift in the management
of type 2 diabetes, positioning dual-agonist therapy
as a robust advancement over traditional single-ag-
onist approaches. By simultaneously targeting GIP
and GLP-1 receptors, tirzepatide achieves a syner-
gistic metabolic restructuring that consistently out-
performs semaglutide in both glycaemic reduction
and substantial weight loss. While the dual-agonist
profile introduces a slightly higher frequency of
gastrointestinal side effects and treatment discon-
tinuation at peak doses, these events remain largely
manageable and are offset by the medicine's superior
ability to restore normoglycemia in nearly half of the
high-dose cohort. Ultimately, while further research
into long-term cardiovascular outcomes and specific
responder phenotypes is necessary, the current ev-
idence suggests that tirzepatide offers a highly ef-
fective, clinically tolerable option for patients who
require more intensive metabolic intervention than
selective GLP-1 receptor agonists can provide.
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